\mathcal{P} -congruence-free Epigroups

LIU JING-GUO¹ AND ZHANG JIN-LING²

School of Mathematics and Statistics, Linyi University, Linyi, Shandong, 276005)
Lanshan Education and Physical Education Bureau, Linyi, Shandong, 276005)

Communicated by Du Xian-kun

Abstract: Let \mathcal{P} denote the equivalence relation on an epigroup in which any of its classes consists precisely of those elements owning the same pseudo-inverse. The purpose of the paper is to characterize epigroups on which any congruence either contains \mathcal{P} or its join with \mathcal{P} is the identity relation on epigroups. As a special subclass of epigroups, completely 0-simple semigroups having the same property are also described.

Key words: congruence, epigroup, completely 0-simple semigroup 2010 MR subject classification: 20M10 Document code: A Article ID: 1674-5647(2017)02-0097-13 DOI: 10.13447/j.1674-5647.2017.02.01

1 Introduction and Preliminaries

An epigroup is a semigroup in which some power of any element lies in a subgroup of the given semigroup. The works by Shevrin were devoted to different structural aspects of epigroup theory (see [1]–[3]). For an element x of a given epigroup, let x^{ω} be the identity of the subgroup G that contains some power of x, and \overline{x} the group inverse of $xx^{\omega}(=x^{\omega}x)$ in G, which is called the pseudo-inverse of x. An epigroup can alternatively be regarded as a unary semigroup with the unary operation of taking pseudo-inverse $x \mapsto \overline{x}$, due to Shevrin (see also [1] and [2]). Further new result on epigroups as unary semigroups about this operation, for instance, occurred in [4]. In [5], the equivalence relation \mathcal{P} on an epigroup, in which its arbitrary classes consist precisely of those elements having the same pseudo-inverse, was introduced, and several characterizations of epigroups in which \mathcal{P} is a congruence were also given. In [6], the relation on the congruence lattice of an epigroup that identifies two congruences if they have the same join with \mathcal{P} was considered. In fact, for a better understanding of congruences on some special semigroups, an essential role is played by the

Received date: Oct. 8, 2014.

Foundation item: The NSF (ZR2010AL004) of Shandong Province of China.

E-mail address: liujingguo@lyu.edu.cn (Liu J G).

interplay of an arbitrary congruence with some known equivalence relations, such as Green's relations $\mathcal{H}, \mathcal{L}, \mathcal{R}, \mathcal{D}$ and \mathcal{J} , which leads to various decompositions of the congruence lattice of a semigroup, helping us to gain insight into the structure of the congruence lattice, even some information on the semigroups. One direction of this idea was reflected in [7], where the authors classed the completely regular semigroups on which any congruence either contains some Green's relation \mathcal{G} , or its join with \mathcal{G} is the identity relation on the semigroups.

The lattice of congruences of a semigroup S is denoted by $\mathcal{C}(S)$, which is partially ordered by inclusion. Recall that for an equivalence relation τ on S, S is called to be τ -congruencefree if for any $\rho \in \mathcal{C}(S)$, either $\rho \cap \tau = \Delta$ or $\tau \subseteq \rho$ (see Definition 1.1 in [7]).

In this paper we characterize \mathcal{P} -congruence-free epigroups. In Section 2, we deal with \mathcal{P} -congruence-free completely 0-simple semigroups and classify them. The main result formulated in Section 3 provides the classification and description of \mathcal{P} -congruence-free epigroups. In Section 1, besides required background information concerning epigroups, we present basic information and auxiliary facts about \mathcal{P} -congruence-free epigroups. Here we generally follow the notation and terminology of [8] and [9]; in particular, we recall the following concepts.

An element a' in a semigroup S is an inverse of a in S if aa'a = a and a'aa' = a'. The set of inverses of a is denoted by V(a), and a is regular if V(a) is not empty. The set of all completely regular elements of a semigroup S (i.e., the group part of S) is denoted by GrS. If S has a zero, Nil $S = \{s \in S : s^n = 0 \text{ for some } n \in \mathbb{Z}^+\}$. For an epigroup S, the equivalence relation \mathcal{P} on S is defined by

$$a\mathcal{P}b$$
 if $\overline{a} = \overline{b} \ (\Leftrightarrow \overline{\overline{a}} = \overline{b} \).$

Notice that for any $a \in S$, $\overline{\overline{a}} = aa^{\omega}$, then $\overline{\overline{a}} = \overline{\overline{\overline{a}}}$, so that $a\mathcal{P}\overline{\overline{a}}$ and no \mathcal{P} -class contains more than one completely regular element.

The following Lemma is a corollary of Theorem 6.45 in [10].

Lemma 1.1 Let S be an epigroup.

- (i) $\mathcal{J} = \mathcal{D}$ in S;
- (ii) for $a \in S$ and $x \in S^1$, if $a\mathcal{D}xa$, then $a\mathcal{L}xa$;
- (iii) for $a \in S$ and $y \in S^1$, if $a \mathcal{D}ay$, then $a \mathcal{R}ay$.

Let ρ be a binary relation on a semigroup S. ρ^{∞} denotes the transitive closure of ρ , and ρ^* denotes the congruence on S generated by ρ . For the latter, explicitly, for $a, b \in S$,

 $a\rho^*b \Leftrightarrow a = b$ or $a = x_1u_1y_1, x_1v_1y_1 = x_2u_2y_2, \dots, x_nv_ny_n = b$ (1.1) for some $x_i, y_i \in S^1$, $u_i, v_i \in S$ such that either $u_i(\rho \cup \Delta)v_i$ or $v_i(\rho \cup \Delta)u_i$, $i = 1, 2, \dots, n$. For any $a, b \in S$, let $\zeta_{a,b}$ be the congruence on S generated by the singleton $\{(a, b)\}$ (this denotation differs slightly from that of its original notation introduced in [11]). The radical of ρ , in notation $\sqrt{\rho}$, which is due to Shevrin, is a relation on S defined by the following condition:

 $a\sqrt{\rho} b \Leftrightarrow$ there exist $m, n \in \mathbb{Z}^+$ such that $a^m \rho b^n \quad (a, b \in S)$. The division relation | and the relation \longrightarrow on S are defined as follows: $a \mid b$ if $b \in J(a) = S^1 a S^1$, $a \longrightarrow b$ if $a \mid b^n$ for some $n \in \mathbb{Z}^+ \quad (a, b \in S)$.