The Invariant Rings of the Generalized Transvection Groups in the Modular Case

Han $XIANG^1$, Nan JI- ZHU^1 and Nam KI- $BONG^2$

(1. School of Mathematical Sciences, Dalian University of Technology, Liaoning, 116024)

(2. Department of Mathematics and Computer Science, University of Wisconsin-Whitewater, Whitewater, WI 53190, United States)

Communicated by Du Xian-kun

Abstract: In this paper, first we investigate the invariant rings of the finite groups $G \leq \operatorname{GL}(n, F_q)$ generated by *i*-transvections and *i*-reflections with given invariant subspaces H over a finite field F_q in the modular case. Then we are concerned with general groups $G_i(\omega)$ and $G_i(\omega)^t$ named generalized transvection groups where ω is a k-th root of unity. By constructing quotient group and tensor, we calculate their invariant rings. In the end, we determine the properties of Cohen-Macaulay, Gorenstein, complete intersection, polynomial and Poincare series of these rings. Key words: invariant, *i*-transvection, *i*-reflection, generalized transvection group 2010 MR subject classification: 13A50, 20F55, 20F99 Document code: O152.6 Article ID: 1674-5647(2017)02-0160-17 DOI: 10.13447/j.1674-5647.2017.02.08

1 Introduction

Let F_q be a finite field, where $q = p^{\nu}$, $\nu \in \mathbb{Z}_+$. Suppose that $x_1, \dots, x_n \in V = F_q^n$ form a basis and $z_1, \dots, z_n \in V^*$ form the dual basis to $\{x_1, \dots, x_n\}$. We denote by $F_q[V]$ the graded ring of polynomial functions on V, which is defined to be the symmetric algebra on V^* . Hence $F_q[V] = F_q[z_1, \dots, z_n]$. If G is a finite group, and $\rho: G \hookrightarrow \operatorname{GL}(n, F_q)$ is a representation of G over F_q , then, via ρ , G acts on the left of the vector space $V = F_q^n$. The invariant ring (see [1], Page 4), denoted by $F_q[V]^G$, is

$$F_q[V]^G = \{ f \in F_q[V] \mid g \cdot f = f, \ \forall g \in G \}.$$

This is a graded subring of $F_q[V]$.

In this paper, we are mainly concerned with the invariant rings of the groups G generated

Received date: Nov. 1, 2016.

Foundation item: The NSF (11371343) of China.

E-mail address: xianghan328@yahoo.com (Han X).

by elements with the codimension i and some related properties over a finite field F_q in the modular case. In this case, the order of G is divided by the characteristic of the field F_q .

A modern algorithm for the construction of invariant ring of group G generated by elements with the codimension 1 can be found in [1]. This problem is originally considered by Landweber and $\text{Stong}^{[2]}$ in connecting with their study of the depth of invariant ring. Years earlier Nakajima^[3] studies the dual representations. And there is another way to obtain these results (see [4]). Much of the argument is devoted to showing that the invariant rings are polynomial.

For the group G_i^+ defined in Definition 1.3, Neusel *et al.*^{[5]-[6]} construct the invariant ring $F_a[V]^{G_i^+}$. In [5], Neusel and Smith adopt a method associated to configurations of hyperplanes. In [6], Nakajima determines finite irreducible subgroups G of GL(V) such that $F_a[V]^G$ are polynomial in the modular case.

A plan of the paper follows. In the remainder of this section, we illustrate the terminology used in this paper. In Section 2, we demonstrate the invariant rings of the groups G_i^+ and G_i generated by *i*-transvections and *i*-reflections, respectively. Constructing quotient group and tensor is the key ingredient in the approach applied in this part. In Section 3, involving a k-th root of unity ω we define a general group $G_i(\omega)$ named generalized transvection group. Then we investigate the invariant ring of $G_i(\omega)$ and its properties of Cohen-Macaulay, Gorenstein, complete intersection, polynomial and Poincare series. In the last section, we consider another generalized transvection group $G_i(\omega)^t$ which is the transpose of the group $G_i(\omega)$ and its properties.

We begin with a short review of some basic definitions concerning invariant and pseudoreflection as a preliminary to introduce *i*-transvection and *i*-reflection we need in this paper. We adopt the definitions from [5] and [7].

Definition 1.1^[7] Given an element $T \in GL(n, F_q)$. Denote the dimension of the subspace $\operatorname{Im}(I - T) \subset V = F_q^n$ over F_q by $\operatorname{Res}(T)$. So the dimension of the subspace $\ker(I - T)$ over F_q is equal to $(n - \operatorname{Res}(\mathbf{T}))$.

In a finite group $G \subseteq \operatorname{GL}(n, F_q)$, a pseudo-reflection (see [5]) $\mathbf{T} \in G$ satisfies $\dim_{F_q}(\operatorname{Im}(\mathbf{I} - \mathbf{I}))$ (T) = 1, i.e., Res(T) = 1. A pseudo-reflection $T \neq I$ is called a transvection if $T|_{(I-T)V} = I$, and a reflection if $T|_{(I-T)V} = -I$. Similarly, we define *i*-transvection and *i*-reflection.

Denote the floor of a number $t \in \mathbf{Q}$ by [t]. Let $\mathbf{T} \in \mathrm{GL}(n, F_q)$ satisfy Definition 1.2 $\operatorname{Res}(\mathbf{T}) = i$, where $1 \leq i \leq \left\lceil \frac{n}{2} \right\rceil$. Then \mathbf{T} is called an i-transvection if $\mathbf{T}|_{(I-T)V} = \mathbf{I}$, and an i-reflection if $T|_{(I-T)V} = -I$. A subspace $H \subset V = F_q^n$ is called the invariant subspace of **T** if $H = \ker(\mathbf{I} - \mathbf{T})$, and the subspace $L = \operatorname{Im}(\mathbf{I} - \mathbf{T}) \subset V$ is called the line subspace of T.

Remark 1.1 (1) Given an *i*-transvection T with a invariant subspace H and a line subspace L, since $T|_{(I-T)V} = I$ and (I-T)V = Im(I-T), it yields that $\text{Im}(I-T) \subseteq \text{ker}(I-T)$, i.e., $L \subseteq H$.