The Interctitical Defocusing Nonlinear Schrödinger Equations with Radial Initial Data in Dimensions Four and Higher

Chuanwei Gao¹, Changxing Miao^{2,*} and Jianwei Yang-Urbain³

 ¹ The Graduate School of China Academy of Engineering Physics, P.O.Box 2101, Beijing 100088, China
 ² Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
 ³ Description of Mathematics Paijing Leading of Technology Physics (100021)

³ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China; and LAGA (UMR CNRS 7539), Université, Paris 13, Sorbonne Paris Cité, Villetaneuse, France

Received 2 November 2017; Accepted (in revised version) 20 June 2018

Abstract. In this paper, we consider the defocusing nonlinear Schrödinger equation in space dimensions $d \ge 4$. We prove that if u is a radial solution which is *priori* bounded in the critical Sobolev space, that is, $u \in L_t^{\infty} \dot{H}_x^{s_c}$, then u is global and scatters. In practise, we use weighted Strichartz space adapted for our setting which ultimately helps us solve the problems in cases $d \ge 4$ and $0 < s_c < \frac{1}{2}$. The results in this paper extend the work of [27, Commun. PDEs, 40 (2015), 265–308] to higher dimensions.

Key Words: Nonlinear Schrödinger equation, scattering, frequency-localized Morawetz estimae, weighted Strichartz space.

AMS Subject Classifications: 35P25, 35Q55, 47J35

1 Introduction

We consider the Cauchy problem for the nonlinear Schrödinger equation (NLS) in $\mathbb{R}_t \times \mathbb{R}_x^d$ with $d \ge 4$:

$$\begin{cases} (i\partial_t + \Delta)u = \mu |u|^p u, \\ u(0,x) = u_0(x). \end{cases}$$
(1.1)

In particular, we call the Eq. (1.1) defocusing when $\mu = 1$, and focusing when $\mu = -1$. In this paper, we are dedicated to dealing with the defocusing case.

http://www.global-sci.org/ata/

©2019 Global-Science Press

^{*}Corresponding author. *Email addresses:* canvee@163.com (C. W. Gao), miao_changxing@iapcm.ac.cn (C. X. Miao), jw-urbain.yang@bit.edu.cn, yang@math.univ-paris13.fr (J. W. Yang)

The solutions of Eq. (1.1) are left invariant by the scaling transformation

$$u(t,x) \mapsto \lambda^{\frac{2}{p}} u(\lambda^2 t, \lambda x) \tag{1.2}$$

for $\lambda > 0$. This scaling invariance defines a notion of criticality. To be more specified, a direct computation shows that the only homogeneous L_x^2 -based Sobolev space that is left invariant by (1.2) is $\dot{H}_x^{s_c}$, where the critical regularity s_c is given by $s_c := \frac{d}{2} - \frac{2}{p}$. We call the problem mass-critical for $s_c = 0$, energy-critical for $s_c = 1$ and intercritical for $0 < s_c < 1$. With $s_c = \frac{d}{2} - \frac{2}{p}$ in mind, we will transfer from s_c to p freely.

We proceed by make the notion of solution precise.

Definition 1.1 (Strong solution). A function $u: I \times \mathbb{R}^d \to \mathbb{C}$ on a non-empty time interval $0 \in I$ is a strong solution to (1.1) if it belongs to $C_t \dot{H}_x^{s_c}(K \times \mathbb{R}^d) \cap L_{t,x}^{\frac{d+2}{2}p}(K \times \mathbb{R}^d)$ for any compact interval $K \subset I$ and obeys the Duhamel formula

$$u(t) = e^{it\Delta} u_0 - i \int_0^t e^{i(t-s)\Delta} (|u|^p u)(s) ds$$
(1.3)

for each $t \in I$. We call *I* the lifespan of *u*. We say that *u* is a maximal-lifespan solution if it cannot be extended to any strictly larger interval. We say *u* is a global solution if $I = \mathbb{R}$.

Let *u* be a maximal-lifespan solution to the problem (1.1), a standard technique shows that the $||u||_{L^{\frac{d+2}{2}p}_{t,x}(I \times \mathbb{R}^d)} < \infty$ implies scattering. That is $I = \infty$ and there exists $u_{\pm} \in \dot{H}^{s_c}_x(\mathbb{R}^d)$ such that

$$\lim_{t \to +\infty} \|u(t) - e^{it\Delta} u_{\pm}\|_{\dot{H}^{s_c}_x(\mathbb{R} \times \mathbb{R}^d)} = 0$$

The above fact promotes us to define the notion of scattering size and blow up as follows:

Definition 1.2 (Scattering size and blow up). We define the scattering size of a solution $u: I \times \mathbb{R}^d \to \mathbb{C}$ to (1.1) by

$$S_I(u):=\iint_{I\times\mathbb{R}^d}|u(t,x)|^{\frac{d+2}{2}p}dxdt.$$

If there exists $t_0 \in I$ so that $S_{[t_0, \sup I]}(u) = \infty$, then we say *u* blows *up* forward in time, correspondingly if there exists $t_0 \in I$ so that $S_{(\inf I, t_0]}(u) = \infty$, then we say *u* blows *up* backward in time.

The problem which we concern in this paper can be subsumed into the following conjecture.

206