Harmonic Polynomials Via Differentiation

Ricardo Estrada*

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Received 8 September 2017; Accepted (in revised version) 19 August 2018

Abstract. It is well-known that if p is a homogeneous polynomial of degree k in n variables, $p \in \mathcal{P}_k$, then the ordinary derivative $p(\nabla)(r^{2-n})$ has the form $A_{n,k}Y(\mathbf{x})r^{2-n-2k}$ where $A_{n,k}$ is a constant and where Y is a harmonic homogeneous polynomial of degree k, $Y \in \mathcal{H}_k$, actually the projection of p onto \mathcal{H}_k . Here we study the distributional derivative $p(\nabla)(r^{2-n})$ and show that the ordinary part is still a multiple of Y, but that the delta part is independent of Y, that is, it depends only on p-Y. We also show that the exponent 2-n is special in the sense that the corresponding results for $p(\nabla)(r^{\alpha})$ do not hold if $\alpha \neq 2-n$.

Furthermore, we establish that harmonic polynomials appear as multiples of $r^{2-n-2k-2k'}$ when $p(\nabla)$ is applied to harmonic multipoles of the form $Y'(\mathbf{x})r^{2-n-2k'}$ for some $Y' \in \mathcal{H}_k$.

Key Words: Harmonic functions, harmonic polynomials, distributions, multipoles.

AMS Subject Classifications: 46F10, 33C55

1 Introduction

It is well known [1,7,19] that any homogeneous polynomial of degree $k, p \in \mathcal{P}_k$, can be decomposed, in a unique fashion, as

$$p = Y + r^2 q, \tag{1.1}$$

where

$$Y = \pi_k(p) \in \mathcal{H}_k, \quad q = \chi_k(p) \in \mathcal{P}_{k-2}, \tag{1.2}$$

the notation \mathcal{H}_k being used to denote the harmonic homogeneous polynomials of degree k.

http://www.global-sci.org/ata/

336

©2018 Global-Science Press

^{*}Corresponding author. *Email address:* restra2@lsu.edu (R. Estrada)

R. Estrada / Anal. Theory Appl., 34 (2018), pp. 336-347

One can easily find the projections $\pi_k(p)$ and $\chi_k(p)$. For example, if we apply the Laplacian to (1.1) we readily obtain $\Delta p = \Delta(r^2q) = 2nq + 4(k-2)q = 2(n+2k-4)q$, so that

$$q = \frac{\Delta p}{2(n+2k-4)}, \quad Y = p - \frac{r^2 \Delta p}{2(n+2k-4)}.$$
 (1.3)

Interestingly, these projections appear in other, somewhat surprising places. Indeed, as explained in the section Spherical Harmonics via Differentiation of [1, Chapter 5], whenever a homogeneous differential operator of degree k is applied to r^{2-n} in \mathbb{R}^n one obtains an expression of the form $u(\mathbf{x})r^{2-n-2k}$ where u is not just homogeneous of degree k, but actually belongs to \mathcal{H}_k . In fact, more is true, since $u = (2-n)(-n)\cdots(-n-2k+4)Y$, that is, if $p \in \mathcal{P}_k$ and we denote $(2-n)(-n)\cdots(-n-2k+4)$ as $A_{n,k}$ then

$$p(\nabla)\left(\frac{1}{r^{n-2}}\right) = A_{n,k} \frac{Y(\mathbf{x})}{r^{n+2k-2}},$$
(1.4)

and in particular if $Y \in \mathcal{H}_k$ then

$$Y(\nabla)\left(\frac{1}{r^{n-2}}\right) = A_{n,k}\frac{Y(\mathbf{x})}{r^{n+2k-2}}.$$
(1.5)

Several further questions arise, however. First, since the function r^{2-n} is singular at the origin, these formulas hold in $\mathbb{R}^n \setminus \{\mathbf{0}\}$ but not in all \mathbb{R}^n , so what are the corresponding formulas for the distributional derivatives[†] $p(\overline{\nabla})(r^{2-n})$ and $Y(\overline{\nabla})(r^{2-n})$?, that is, the corresponding formulas in the whole space[‡]. Curiously, while in general $p(\overline{\nabla})(r^{2-n})$ will contain extra terms, namely a delta part, the distributional expression $Y(\overline{\nabla})(r^{2-n})$ remains basically equal to (1.5) since $Y(\overline{\nabla})(r^{2-n})$ does not have a delta part; delta parts and ordinary parts of a distribution are explained in Section 2. We give two different proofs of the formula for $Y(\overline{\nabla})(r^{2-n})$, one by induction in Section 3 and another in Section 5. We also consider the distributional derivative $p(\overline{\nabla})(r^{2-n})$ in Section 4, showing that in general the ordinary part of this derivative depends only on *Y*, while the delta part depends only on *q*.

Furthermore, we show that harmonic polynomials are also obtained when we take the derivatives of multipoles[§] of the form $Y'(\mathbf{x})/r^{2k'+n-2}$ for some harmonic polynomial $Y' \in \mathcal{H}_{k'}$. Indeed we obtain formulas for the derivatives $p(\overline{\nabla}) \left(p.v. \left(Y'(\mathbf{x})/r^{2k'+n-2} \right) \right)$ of the principal value distribution $p.v. \left(Y'(\mathbf{x})/r^{2k'+n-2} \right)$ and show that the ordinary part is a multipole of the form $Z(\mathbf{x})/r^{2k'+2k+n-2}$ for some $Z \in \mathcal{H}_{k+k'}$.

[†]Following Farassat [6] we denote distributional derivatives with an overbar, namely, $\overline{\nabla}_i$, $\overline{\Delta}$, $\overline{\partial}/\partial x_i$, and so on.

[‡]Distributional derivatives of this kind play an important role in Physics; the distributional derivatives $\overline{\nabla}_i \overline{\nabla}_i (1/r)$ were given by Frahm [8], and can be found in the textbooks [14].

[§]Such harmonic multipoles have received increasing attention in recent years [2]; see also [18]. They play a fundamental role in the ideas of the late professor Stora on convergent Feyman amplitudes [17,21].