Boundedness Estimates for Commutators of Riesz Transforms Related to Schrödinger Operators

Yueshan Wang* and Yuexiang He

Department of Mathematics, Jiaozuo University, Jiaozuo 454003, Henan, China

Received 9 November 2017; Accepted (in revised version) 10 May 2018

Abstract. Let $\mathcal{L} = -\Delta + V$ be a Schrödinger operator on $\mathbb{R}^n (n \ge 3)$, where the nonnegative potential V belongs to reverse Hölder class RH_{q_1} for $q_1 > \frac{n}{2}$. Let $H_{\mathcal{L}}^p(\mathbb{R}^n)$ be the Hardy space associated with \mathcal{L} . In this paper, we consider the commutator $[b, T_\alpha]$, which associated with the Riesz transform $T_\alpha = V^\alpha (-\Delta + V)^{-\alpha}$ with $0 < \alpha \le 1$, and a locally integrable function b belongs to the new Campanato space $\Lambda_{\beta}^{\theta}(\rho)$. We establish the boundedness of $[b, T_\alpha]$ from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for $1 with <math>1/q = 1/p - \beta/n$. We also show that $[b, T_\alpha]$ is bounded from $H_{\mathcal{L}}^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ when $n/(n+\beta) . Moreover, we prove that <math>[b, T_\alpha]$ maps $H_{\mathcal{L}}^{\frac{n}{n+\beta}}(\mathbb{R}^n)$

continuously into weak $L^1(\mathbb{R}^n)$.

Key Words: Riesz transform, Schrödinger operator, commutator, Campanato space, Hardy space. **AMS Subject Classifications**: 42B30, 42B25, 35J10

1 Introduction and results

Let $\mathcal{L} = -\Delta + V$ be a Schrödinger operator on \mathbb{R}^n , where $n \ge 3$. The function V is nonnegative, $V \ne 0$, and belongs to a reverse Hölder class RH_{q_1} for some $q_1 > n/2$, that is to say, V satisfies the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B}V(y)^{q_1}dy\right)^{1/q_1} \leq \frac{C}{|B|}\int_{B}V(y)dy$$

for all ball $B \subset \mathbb{R}^n$. We consider the Riesz transform $T_{\alpha} = V^{\alpha}(-\Delta + V)^{-\alpha}$, where $0 < \alpha \leq 1$.

Many results about $T_{\alpha} = V^{\alpha}(-\Delta+V)^{-\alpha}$ and its commutator have been obtained. Shen [1] established the L^p - boundedness of T_1 and $T_{1/2}$, Liu and Tang [2] showed that T_1 and $T_{1/2}$ are bounded on $H^p_{\mathcal{L}}(\mathbb{R}^n)$ for $\frac{n}{n+\delta'} . For <math>0 < \alpha \le 1$, Sugano [3] studied the L^p - boundedness and Hu and Wang [4] obtained the $H^p_{\mathcal{L}}(\mathbb{R}^n)$ boundedness. When $b \in BMO$, Guo,

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* wangys1962@163.com (Y. S. Wang), heyuexiang63@163.com (Y. X. He)

Li and Peng [5] obtained the L^p -boundedness of commutators $[b, T_1]$ and $[b, T_{1/2}]$, Li and Peng in [6] proved that $[b, T_1]$ and $[b, T_{1/2}]$ map continuously $H^1_{\mathcal{L}}(\mathbb{R}^n)$ into weak $L^1(\mathbb{R}^n)$. When $b \in BMO_{\theta}(\rho)$ and $0 < \alpha \le 1$, the L^p -boundedness of $[b, T_{\alpha}]$ was investigated in [7] and the boundedness from $H^1_{\mathcal{L}}(\mathbb{R}^n)$ into weak $L^1(\mathbb{R}^n)$ given in [4].

In this paper, we are interested in the boundedness of $[b, T_{\alpha}]$ when *b* belongs to the new Campanato class $\Lambda^{\theta}_{\beta}(\rho)$. Let us recall some concepts.

As in [1], for a given potential $V \in RH_{q_1}$ with $q_1 > n/2$, we define the auxiliary function

$$\rho(x) = \sup\left\{r > 0: \frac{1}{r^{n-2}} \int_{B(x,r)} V(y) dy \le 1\right\}, \quad x \in \mathbb{R}^n$$

It is well known that $0 < \rho(x) < \infty$ for any $x \in \mathbb{R}^n$.

Let $\theta > 0$ and $0 < \beta < 1$, in view of [8], the new Campanato class $\Lambda^{\theta}_{\beta}(\rho)$ consists of the locally integrable functions *b* such that

$$\frac{1}{|B(x,r)|^{1+\beta/n}} \int_{B(x,r)} |b(y) - b_B| dy \le C \left(1 + \frac{r}{\rho(x)}\right)^{\theta}$$

for all $x \in \mathbb{R}^n$ and r > 0. A seminorm of $b \in \Lambda^{\theta}_{\beta}(\rho)$, denoted by $[b]^{\theta}_{\beta}$, is given by the infimum of the constants in the inequalities above.

Note that if $\theta = 0$, $\Lambda^{\theta}_{\beta}(\rho)$ is the classical Campanato space; If $\beta = 0$, $\Lambda^{\theta}_{\beta}(\rho)$ is exactly the space $BMO_{\theta}(\rho)$ introduced in [9].

We recall the Hardy space associated with Schrödinger operator \mathcal{L} , which had been studied by Dziubański and Zienkiewicz in [10,11]. Because $V \in L_{loc}^{q_1}(\mathbb{R}^n)$, the Schrödinger operator \mathcal{L} generates a (C_0) contraction semigroup $\{T_s^{\mathcal{L}}:s>0\} = \{e^{-s\mathcal{L}}:s>0\}$. The maximal function associated with $\{T_s^{\mathcal{L}}:s>0\}$ is defined by $M^{\mathcal{L}}f(x) = \sup_{s>0} |T_s^{\mathcal{L}}f(x)|$. we always denote $\delta' = \min\{1, 2-n/q_1\}$. For $\frac{n}{n+\delta'} , We say that <math>f$ is an element of $H_{\mathcal{L}}^p(\mathbb{R}^n)$ if the maximal function $M^{\mathcal{L}}f$ belongs to $L^p(\mathbb{R}^n)$. The quasi-norm of f is defined by $\|f\|_{H_{\mathcal{L}}^p(\mathbb{R}^n)} = \|M^{\mathcal{L}}f\|_{L^p(\mathbb{R}^n)}$.

We now formulate our main results as follows.

Theorem 1.1. Let $V \in RH_{q_1}$ with $q_1 > n/2$, and let $b \in \Lambda^{\theta}_{\beta}(\rho)$. If $0 < \alpha \le 1$ and $\frac{q_1}{q_1 - \alpha} , then$

$$\|[b,T_{\alpha}^*]\|_{L^q(\mathbb{R}^n)} \leq C[b]_{\beta}^{\theta} \|f\|_{L^p(\mathbb{R}^n)},$$

where $1/q = 1/p - \beta/n$, and $T^*_{\alpha} = (-\Delta + V)^{-\alpha} V^{\alpha}$.

We immediately deduce the following result by duality.

Corollary 1.1. Let $V \in RH_{q_1}$ with $q_1 > n/2$, and let $b \in \Lambda_{\beta}^{\theta}(\rho)$. If $0 < \alpha \le 1$ and 1 , then

 $\|[b,T_{\alpha}]\|_{L^{q}(\mathbb{R}^{n})} \leq C[b]^{\theta}_{\beta}\|f\|_{L^{p}(\mathbb{R}^{n})},$

where $1/q = 1/p - \beta/n$.