Domain of Euler Mean in the Space of Absolutely *p***-Summable Double Sequences with** 0

Medine Yeşilkayagil¹ and Feyzi Başar^{2,*}

¹ School of Applied Sciences, Uşak University, 1 Eylül Campus, 64200–Uşak, Turkey
² Professor Emeritus, Faculty of Education, İnönü University, Malatya 44280, Turkey

Received 27 August 2017; Accepted (in revised version) 27 November 2017

Abstract. In this study, as the domain of four dimensional Euler mean E(r,s) of orders r,s in the space \mathcal{L}_p for $0 , we examine the double sequence space <math>\mathcal{E}_p^{r,s}$ and some properties of four dimensional Euler mean. We determine the α - and $\beta(bp)$ -duals of the space $\mathcal{E}_p^{r,s}$, and characterize the classes $(\mathcal{E}_p^{r,s}:\mathcal{M}_u), (\mathcal{E}_p^{r,s}:\mathcal{C}_{bp})$ and $(\mathcal{E}_p^{r,s}:\mathcal{L}_q)$ of four dimensional matrix transformations, where $1 \le q < \infty$. Finally, we shortly emphasize on the Euler spaces of single and double sequences, and note some further suggestions.

Key Words: Summability theory, double sequences, double series, alpha-, beta- and gammaduals, matrix domain of 4-dimensional matrices, matrix transformations.

AMS Subject Classifications: 46A45, 40C05

1 Introduction

We denote the set of all complex valued double sequences by Ω which is a vector space with coordinatewise addition and scalar multiplication. Any vector subspace of Ω is called as *a double sequence space*. A double sequence $x = (x_{mn})$ of complex numbers is said to be *bounded* if $||x||_{\infty} = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty$, where $\mathbb{N} = \{0,1,2,\cdots\}$. The space of all bounded double sequences is denoted by \mathcal{M}_u which is a Banach space with the norm $||\cdot||_{\infty}$. Consider the sequence $x = (x_{mn}) \in \Omega$. If for every $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon) \in \mathbb{N}$ and $l \in \mathbb{C}$ such that $|x_{mn} - l| < \varepsilon$ for all $m, n > n_0$, then we call that the double sequence x is *convergent* in the *Pringsheim's sense* to the limit l and write $p - \lim_{m,n\to\infty} x_{mn} = l$; where \mathbb{C} denotes the complex field. By \mathcal{C}_p , we denote the space of all convergent double sequences in the Pringsheim's sense. It is well-known that there are such sequences in the space \mathcal{C}_p but not in the space \mathcal{M}_u . Indeed following Boos [7, pp. 16], if we define the sequence

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* medine.yesilkayagil@usak.edu.tr (M. Yeşilkayagil), feyzibasar@gmail.com(F. Başar)

 $x = (x_{mn})$ by

$$x_{mn} := \begin{cases} n, m=0, n \in \mathbb{N}, \\ 0, m \ge 1, n \in \mathbb{N}, \end{cases}$$

then it is trivial that $x \in C_p - M_u$, since $p - \lim_{m,n\to\infty} x_{mn} = 0$ but $||x||_{\infty} = \infty$. So, we can consider the space C_{bp} of the double sequences which are both convergent in the Pringsheim's sense and bounded, i.e., $C_{bp} = C_p \cap M_u$. A sequence in the space C_p is said to be *regularly convergent* if it is a single convergent sequence with respect to each index and denote the space of all such sequences by C_r . Also by C_{bp0} and C_{r0} , we denote the spaces of all double sequences converging to 0 contained in the sequence spaces C_{bp} and C_r , respectively. Móricz [12] proved that C_{bp} , C_{bp0} , C_r and C_{r0} are Banach spaces with the norm $\|\cdot\|_{\infty}$.

Let λ be a space of double sequences, converging with respect to some linear convergence rule ϑ -lim: $\lambda \to \mathbb{C}$. The sum of a double series $\sum_{i,j} x_{ij}$ with respect to this rule is defined by $\vartheta - \sum_{i,j} x_{ij} = \vartheta - \lim_{m,n\to\infty} \sum_{i,j=0}^{m,n} x_{ij}$. For short, throughout the text the summations

without limits run from 0 to ∞ , for example $\sum_{i,j} x_{ij}$ means that $\sum_{i,j=0}^{\infty} x_{ij}$.

The α -dual λ^{α} , $\beta(\vartheta)$ -dual $\lambda^{\beta(\vartheta)}$ with respect to the ϑ -convergence and the γ -dual λ^{γ} of a double sequence space λ are respectively defined by

$$\lambda^{\alpha} := \left\{ (a_{kl}) \in \Omega : \sum_{k,l} |a_{kl} x_{kl}| < \infty \text{ for all } (x_{kl}) \in \lambda \right\},$$

$$\lambda^{\beta(\vartheta)} := \left\{ (a_{kl}) \in \Omega : \vartheta - \sum_{k,l} a_{kl} x_{kl} \text{ exists for all } (x_{kl}) \in \lambda \right\},$$

$$\lambda^{\gamma} := \left\{ (a_{kl}) \in \Omega : \sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=0}^{m,n} a_{kl} x_{kl} \right| < \infty \text{ for all } (x_{kl}) \in \lambda \right\}.$$

It is easy to see for any two spaces λ , μ of double sequences that $\mu^{\alpha} \subset \lambda^{\alpha}$ whenever $\lambda \subset \mu$ and $\lambda^{\alpha} \subset \lambda^{\gamma}$. Additionally, it is known that the inclusion $\lambda^{\alpha} \subset \lambda^{\beta(\vartheta)}$ holds while the inclusion $\lambda^{\beta(\vartheta)} \subset \lambda^{\gamma}$ does not hold, since the ϑ -convergence of a sequence of partial sums of a double series does not imply its boundedness.

Let λ and μ be two double sequence spaces, and $A = (a_{mnkl})$ be any four-dimensional complex infinite matrix. Then, we say that A defines a *matrix mapping* from λ into μ and we write $A:\lambda \rightarrow \mu$, if for every sequence $x = (x_{kl}) \in \lambda$ the A-transform $Ax = \{(Ax)_{mn}\}_{m,n \in \mathbb{N}}$ of x exists and is in μ ; where

$$(Ax)_{mn} = \vartheta - \sum_{k,l} a_{mnnk} x_{kl}$$
 for each $m, n \in \mathbb{N}$. (1.1)

242