On Weighted *L^p***– Approximation by Weighted Bernstein-Durrmeyer Operators**

Meiling Wang¹, Dansheng Yu^{1,*} and Dejun Zhao²

¹ Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China

² College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China

Received 30 June 2017; Accepted (in revised version) 14 August 2017

Abstract. In the present paper, we establish direct and converse theorems for weighted Bernstein-Durrmeyer operators under weighted L^p -norm with Jacobi weight $w(x) = x^{\alpha}(1-x)^{\beta}$. All the results involved have no restriction $\alpha, \beta < 1 - \frac{1}{p}$, which indicates that the weighted Bernstein-Durrmeyer operators have some better approximation properties than the usual Bernstein-Durrmeyer operators.

Key Words: Weighted L^p – approximation, weighted Bernstein-Durrmeyer operators, direct and converse theorems.

AMS Subject Classifications: 41A10, 41A25

1 Introduction

Let

$$w(x) = x^{\alpha} (1-x)^{\beta}, \quad \alpha, \beta > -1, \quad 0 \le x \le 1,$$

be the classical Jacobi weights. Let

$$L_w^p := \begin{cases} \{f : wf \in L^p(0,1)\}, & 1 \le p < \infty, \\ \{f : f \in C(0,1), \lim_{x(1-x) \to 0} (wf)(x) = 0\}, & p = \infty. \end{cases}$$

Set

$$||f||_{p,w,I} = \begin{cases} \left(\int_{I} |(wf)(x)|^{p} dx \right)^{1/p}, & 1 \le p < \infty, \\ \sup_{x \in I} |(wf)(x)|, & p = \infty. \end{cases}$$

*Corresponding author. Email addresses: dsyu@hznu.edu.cn (D. S. Yu), zdejun@aliyun.com.cn (D. J. Zhao)

http://www.global-sci.org/ata/

©2018 Global-Science Press

When I = [0,1], we briefly write $||f||_{p,w}$ instead of $||f||_{p,w,[0,1]}$. Obviously, $||f||_{p,w}$ is the norm of L^p_w spaces.

For any $f \in L^p([0,1])$, $1 \le p \le \infty$, the corresponding Bernstein-Durrmeyer operators $M_n(f,x)$ are defined as follows:

$$M_n(f,x) = (n+1)\sum_{k=0}^n p_{n,k}(x) \int_0^1 p_{n,k}(t)f(t)dt, \quad x \in [0,1],$$

where

$$p_{n,k}(x) = \binom{k}{n} x^k (1-x)^{n-k}, \quad x \in [0,1], \quad k = 0, 1, \cdots, n.$$

The approximation properties of $M_n(f,x)$ in L_w^p were also studied by Zhang (see [9]). Some approximation results were given under the restrictions

$$-\frac{1}{p} < \alpha, \beta < 1 - \frac{1}{p}$$

on the weight parameters. Generally speaking, the restrictions can not be eliminated for the approximation by $M_n(f,x)$. For the weighted approximation by Kantorovich-Bernstein operators defined by

$$K_n(f,x) := \sum_{k=0}^n (n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(u) du p_{nk}(x),$$

the situation is similar (see [5]). Recently, Della Vecchia, Mastroianni and Szabados (see [2]) introduced a weighted generalization of the $K_n(f,x)$ as follows:

$$K_n^{\#}(f,x) := \sum_{k=0}^n \frac{\int_{I_k} (wf)(t) dt}{\int_{I_k} w(t) dt} p_{nk}(x), \quad x \in [0,1].$$
(1.1)

When $\alpha = \beta = 0$, $K_n^{\#}(f, x)$ reduces to the classical Kantorovich-Bernstein operator $K_n(f, x)$. Della Vecchia, Mastroianni and Szabados obtained the direct and converse theorems and a Voronovskaya-type relation in [2], and solved the saturation problem of the operator in [3]. Their results showed that $K_n^{\#}(f, x)$ allows a wider class of functions than the operator $K_n(f, x)$. In fact, they dropped the restrictions $\alpha, \beta < 1 - \frac{1}{p}$ on the weight parameters. Later, Yu (see [8]) introduced another kind of modified Bernstein-Kantorvich operators, and established direct and converse results on weighted approximation which also have no restrictions $\alpha, \beta < 1 - \frac{1}{p}$.

Then, a natural question is: can we modified the Bernstein-Durrmeyer operators properly such that the restrictions $\alpha, \beta < 1 - \frac{1}{p}$ on weighted approximation can be dropped? In the present paper, we will show that the weighted Bernstein-Durrmeyer operator