Maximal Inequalities for the Best Approximation Operator and Simonenko Indices

Sonia Acinas^{1,2,*} and Sergio Favier^{1,3}

 ¹ Instituto de Matemática Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, Ejército de los Andes 950, D5700HHW San Luis, Argentina
 ² Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, L6300CLB Santa Rosa, La Pampa, Argentina
 ³ Departamento de Matemática, Universidad Nacional de San Luis, D5700HHW San Luis, Argentina

Received 30 September 2016; Accepted (in revised version) 24 March 2017

Abstract. In an abstract set up, we get strong type inequalities in L^{p+1} by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number *p* is related to Simonenko indices. We apply the results to get strong inequalities for maximal functions associated to best Φ -approximation operators in an Orlicz space L^{Φ} .

Key Words: Simonenko indices, maximal inequalities, best approximation.

AMS Subject Classifications: 41A10, 41A50, 41A45

1 Introduction

In this paper we denote by \mathcal{I} the set of all non decreasing functions φ defined for all real number x > 0, such that $\varphi(x) > 0$ for all x > 0, $\varphi(0+) = 0$ and $\lim_{x \to \infty} \varphi(x) = \infty$.

We say that a non decreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the Δ_2 condition, symbolically $\varphi \in \Delta_2$, if there exists a constant $\Lambda_{\varphi} > 0$ such that $\varphi(2x) \leq \Lambda_{\varphi}\varphi(x)$ for all $x \geq 0$.

Now, given $\varphi \in J$, we consider $\Phi(x) = \int_0^x \varphi(t) dt$. Observe that $\Phi: [0, \infty) \to [0, \infty)$ is a convex function such that $\Phi(x) = 0$ if and only if x = 0. In the literature, a function Φ satisfying the previous conditions is known as a Young function. In addition, as $\varphi \in J$ we have that Φ is increasing, $\frac{\Phi(x)}{x} \to 0$ as $x \to 0$ and $\frac{\Phi(x)}{x} \to \infty$ as $x \to \infty$. Thus, according to [6], a function Φ with this property is called an *N*-function.

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* sonia.acinas@gmail.com (S. Acinas), sfavier@unsl.edu.ar (S. Favier)

If $\varphi \in \mathcal{I}$ is a right-continuous function that satisfies the Δ_2 condition, then

$$\frac{1}{2}(\varphi(a) + \varphi(b)) \le \varphi(a + b) \le \Lambda_{\varphi}(\varphi(a) + \varphi(b))$$

for every $a, b \ge 0$.

Also note that the Δ_2 condition on Φ implies

$$\frac{x}{2\Lambda_{\varphi}}\varphi(x) \le \Phi(x) \le x\varphi(x)$$

for every $x \ge 0$.

If $\varphi \in \mathfrak{I}$, we define $L^{\varphi}(\mathbb{R}^n)$ as the class of all Lebesgue measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \varphi(t|f|) dx < \infty$ for some t > 0 and where dx denotes the Lebesgue measure on \mathbb{R}^n . For a convex function Φ , $L^{\Phi}(\mathbb{R}^n)$ is the classic Orlicz space (see [10]). And, if $\Phi \in \Delta_2$ then $L^{\Phi}(\mathbb{R}^n)$ is the space of all measurable functions f defined on \mathbb{R}^n such that $\int_{\mathbb{R}^n} \Phi(|f|) dx < \infty$.

A non decreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the ∇_2 condition, denoted $\varphi \in \nabla_2$, if there exists a constant $\lambda_{\varphi} > 2$ such that $\varphi(2x) \ge \lambda_{\varphi}\varphi(x)$ for all $x \ge 0$.

We claim that a non decreasing function $\varphi: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies the Δ' condition, symbolically $\varphi \in \Delta'$, if there exists a constant K > 0 such that $\varphi(xy) \leq K\varphi(x)\varphi(y)$ for all $x, y \geq x_0 \geq 0$. If $x_0 = 0$ then φ satisfies the Δ' condition globally (denoted $\varphi \in \Delta'$ globally).

With the aim of comparing functions in Orlicz spaces, some partial ordering relations were treated in Chapter II of [10]. In [9] Mazzone and Zó introduce the quasi-increasing function's concept, they define the relation \prec between two non negative functions and they determine some properties of the relation. Later, in [1], it is defined and thoroughly studied another relation \prec_N . Both relations are used to obtain strong type inequalities as follows.

Let $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ be a non decreasing function such that $\varphi(0) = 0$ and satisfies a weak type inequality like

$$\mu(\{f > a\}) \le C_w \int_{\{f > a\}} \frac{\varphi(g)}{\varphi(a)} d\mu \quad \text{for all } a > 0,$$

or an extra-weak type inequality like

$$\mu(\{f > a\}) \le 2C_w \int_{\{f > a\}} \varphi\left(\frac{g}{a}\right) d\mu \quad \text{for all } a > 0,$$

where $f,g: \Omega \to \mathbb{R}_0^+$ are two fixed measurable functions. Then, in [9] and [1] it has considered functions $\Psi \in C^1([0,\infty))$, $\Psi(x) = \int_0^x \psi(t) dt$ and $\varphi \prec \psi$ or $\varphi \prec_N \psi$, which allows us to get strong type inequalities like

$$\int_{\Omega} \Psi(f) d\mu \leq 2C_w \rho \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu.$$
(1.1)

254