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Abstract. In this paper we establish the oscillation inequality of harmonic functions
and Hölder estimate of the functions in the domain of the Laplacian on connected post
critically finite (p.c.f.) self-similar sets.
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1 Introduction

Recently there are considerable interests in studying Hölder estimates of harmonic func-
tions or functions in the domain of Dirichlet forms and the Laplacian on various fractal
sets (see [1, 2, 4–10]). The results above can be used in the upper bound estimates of heat
kernel, the transition density estimates, and spaces embedding.

In [6] Strichartz established the Hölder estimates of harmonic functions and the func-
tions in the domain of the Laplacian on a class of Sierpinski gasket type sets with D3

symmetry. In [9], the authors extended the results for harmonic functions on level n
Sierpinski gaskets and n-gaskets.

Let Fi, i = 1,··· ,N be contractive mappings, K is the unique nonempty compact set
satisfying

K=
N
⋃

i=1

FiK,

V0={p1,··· ,pn} is boundary of K with n≤N, and f is continuous on K. The initial energy
of K can be defined as

ε0( f , f )= ∑
1≤i<j≤n

( f (pi)− f (pj))
2.
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In [4] Kigami showed that there existed the matrices Aj, j= 1,2,··· ,N satisfying h|FiV0
=

Ajh|V0
if h is a harmonic function on K.

For any stochastic matrix M=(Mi,j), Hajnal [3] defined

λ(M)=1−min
i1,i2

∑
j

min{Mi1 ,j,Mi2,j}∈ [0,1].

Let Ai=(ai
jk)n×n, i=1,2,··· ,N denote the harmonic extension matrices obtained by using

Kigami’s Theory (see [4] for details). Let λi,λ(Ai) for i=1,2,··· ,N.
In the present paper we have obtained the main results as follows:

Theorem 1.1. Let Osc( f ,E) denote the difference between the maximum and minimum values
of f on a set E. If a continuous function h is harmonic on a p.c.f. self-similar set K, then

Osc(h,FiK)≤λi ·Osc(h,K) for 1≤ i≤N. (1.1)

Moreover,
Osc(h,FwK)≤λw ·Osc(h,K). (1.2)

Where λw =λw1
···λwm for the word w=w1 ···wm. Furthermore,

|h(x)−h(y)|≤2λw ·‖h‖∞ , if x,y∈FwK. (1.3)

The paper is arranged as follows. In Section 2 we show some basic facts about p.c.f.
self-similar sets. In Section 3 we establish the oscillation inequality of harmonic functions
and Hölder estimate of the function in the domain of the Laplacian on p.c.f. self-similar
sets. In Appendix, we show that if there exists Mij = 1∈ M for a stochastic matrix M=
(Mi,j), then δ(M)=λ(M).

2 Basic facts about p.c.f. self-similar sets

In this section we summarize some basic facts about p.c.f. self-similar sets from Kiga-
mi [4].

Let S={1,2,··· ,N}, and K is the unique nonempty compact set satisfying

K=
N
⋃

i=1

FiK.

For m≥0, we define Σm =Sm = {1,2,··· ,N}m with Σ0 = {∅} and call ∅ the empty word.
Also, set

Σ∗=
⋃

m≥0

Σm and Σ∞=S∞.

Denote the length of w∈Σ∗ by |w| for w=w1w2 ···wn. For k≤n, let w|k=w1w2 ···wk denote
the initial segment of w of length k.


