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Abstract. Let Ω ∈ L2(Sn−1) be homogeneous function of degree zero and b be BMO
functions. In this paper, we obtain some boundedness of the Littlewood-Paley Opera-
tors and their higher-order commutators on Herz spaces with variable exponent.
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1 Introduction

The theory of function spaces with variable exponent has extensively studied by re-
searchers since the work of Kováčik and Rákosnı́k [7] appeared in 1991. In [9] and [10],
the authors proved the boundedness of some Littlewood-Paley operators on variable Lp

spaces, respectively.

Given an open set E⊂Rn, and a measurable function p(·):E−→[1,∞), Lp(·)(E) denotes
the set of measurable functions f on E such that for some λ>0,

∫

E

( | f (x)|

λ

)p(x)
dx<∞.

This set becomes a Banach function space when equipped with the Luxemburg-Nakano
norm

‖ f‖Lp(·)(E)= inf
{

λ>0 :
∫

E

( | f (x)|

λ

)p(x)
dx≤1

}

.
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These spaces are referred to as variable Lp spaces, since they generalized the standard Lp

spaces: if p(x)= p is constant, then Lp(·)(E) is isometrically isomorphic to Lp(E).

The space L
p(·)
loc (Ω) is defined by

L
p(·)
loc (Ω) :={ f : f ∈Lp(·)(E) forallcompactsubsets E⊂Ω}.

Define P0(E) to be set of p(·) : E−→ (0,∞) such that

p−=essinf{p(x) : x∈E}>0, p+=esssup{p(x) : x∈E}<∞.

Define P(E) to be set of p(·) : E−→ [1,∞) such that

p−=essinf{p(x) : x∈E}>1, p+=esssup{p(x) : x∈E}<∞.

Denote p′(x)= p(x)/(p(x)−1).
Let f ∈L1

loc(R
n), the Hardy-Littlewood maximal operator is defined by

M f (x)=sup
r>0

1

|Br(x)|

∫

Br(x)
| f (y)|dy,

where Br(x) = {y ∈Rn : |x−y|< r}. Let B(Rn) be the set of p(·) ∈ P(Rn) such that the
Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn). In addition, we denote
the Lebesgue measure and the characteristic function of a measurable set A⊂Rn by |A|
and χA respectively. The notation f ≈ g means that there exist constants C1,C2 > 0 such
that C1g≤ f ≤C2g.

In variable Lp spaces there are some important lemmas as follows.

Lemma 1.1. If p(·)∈ P(Rn) and satisfies

|p(x)−p(y)|≤
C

−log(|x−y|)
, |x−y|≤1/2, (1.1)

and

|p(x)−p(y)|≤
C

log(|x|+e)
, |y|≥ |x|, (1.2)

then p(·)∈ B(Rn), that is the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).

Lemma 1.2 (see [7]). Let p(·)∈P(Rn). If f∈Lp(·)(Rn) and g∈Lp′(·)(Rn), then f g is integrable
on Rn and

∫

Rn
| f (x)g(x)|dx≤ rp‖ f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

where
rp =1+1/p−−1/p+.


