*H*¹-Estimates of the Littlewood-Paley and Lusin Functions for Jacobi Analysis II

Takeshi Kawazoe*

Department of Mathematics, Keio University at SFC, Endo, Fujisawa, Kanagawa, 252-8520, Japan

Received 17 November 2014; Accepted (in revised version) 28 October 2015

Abstract. Let $(\mathbb{R}_+,*,\Delta)$ be the Jacobi hypergroup. We introduce analogues of the Littlewood-Paley *g* function and the Lusin area function for the Jacobi hypergroup and consider their (H^1,L^1) boundedness. Although the *g* operator for $(\mathbb{R}_+,*,\Delta)$ possesses better property than the classical *g* operator, the Lusin area operator has an obstacle arisen from a second convolution. Hence, in order to obtain the (H^1,L^1) estimate for the Lusin area operator, a slight modification in its form is required.

Key Words: Jacobi analysis, Jacobi hypergroup, g function, area function, real Hardy space.

AMS Subject Classifications: 22E30, 43A30, 43A80

1 Introduction

One of main subjects of the so-called real method in classical harmonic analysis related to the Poisson integral $f * p_t$ is to investigate the Littlewood-Paley theory. For example, in the one dimensional setting, the following singular integral operators were respectively well-known as the Littlewod-Paley *g* function and the Lusin area function

$$g^{\mathbb{R}}(f)(x) = \left(\int_0^\infty \left| f * t \frac{\partial}{\partial t} p_t(x) \right|^2 \frac{dt}{t} \right)^{1/2}, \tag{1.1a}$$

$$S^{\mathbb{R}}(f)(x) = \left(\int_0^\infty \frac{1}{t} \chi_t * \left| f * t \frac{\partial}{\partial t} p_t \right|^2(x) \frac{dt}{t} \right)^{1/2},$$
(1.1b)

where χ_t is the characteristic function of [-t,t]. These operators satisfy the maximal theorem, that is, a weak type L^1 estimate and a strong type L^p estimate for $1 . Moreover, they are bounded form <math>H^1$ into L^1 (cf. [10–12]). Our matter of concern is to extend these results to other topological spaces *X*. Roughly speaking, in some examples of *X* of homogeneous type (see [2]), Poisson integrals are generalized on *X* and analogous

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email address:* kawazoe@sfc.keio.ac.jp (T. Kawazoe)

Littlewood-Paley theory has been developed (cf. [2,5,10]). On the other hand, if the space X is not of homogeneous type, we encounter difficulties. As an example of X of non homogeneous type with Poisson integrals, noncompact Riemannian symmetric spaces X = G/K are well-known. Lohoue [9] and Anker [1] generalize the Littlewood-Paley g function and the Luzin area function to G/K and show that they satisfy the maximal theorem (see below). However, we know little or nothing whether they are bounded from H^1 into L^1 , because we first have to find out a suitable definition of a real Hardy space on G/K. The aim of this paper is to introduce a real Hardy space $H^1(\Delta)$ and show that they are bounded from $H^1(\Delta)$ into $L^1(\Delta)$ for the Jacobi hypergroup ($\mathbb{R}_+,*,\Delta$), which is a generalization of K-invariant setting on G/K of real rank one.

We briefly overview the Jacobi hypergroup $(\mathbb{R}_+,*,\Delta)$. We refer to [4] and [8] for a description of general context. For $\alpha \ge \beta \ge -\frac{1}{2}$ and $(\alpha,\beta) \ne (-\frac{1}{2},-\frac{1}{2})$ we define the weight function Δ on \mathbb{R}_+ as

$$\Delta(x) = (2\mathrm{sh}x)^{2\alpha+1}(2\mathrm{ch}x)^{2\beta+1}.$$

Clearly, it follows that

$$\Delta(x) \leq c \begin{cases} e^{2\rho x}, & x > 1, \\ x^{2\gamma_0}, & x \leq 1, \end{cases}$$

where $\rho = \alpha + \beta + 1$ and $\gamma_0 = \alpha + \frac{1}{2}$. For $\lambda \in \mathbb{C}$ let ϕ_{λ} be the Jacobi function on \mathbb{R}_+ defined by

$$\phi_{\lambda}(x) = {}_{2}F_{1}\left(\frac{\rho+i\lambda}{2}, \frac{\rho-i\lambda}{2}; \alpha+1; -(\mathrm{sh}x)^{2}\right),$$

where $_2F_1$ the hypergeometric function. Then the Jacobi transform \hat{f} of a function f on \mathbb{R}_+ is defined by

$$\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(x) \phi_\lambda(x) \Delta(x) dx.$$

We define a generalized translation on \mathbb{R}_+ by using the kernel form of the product formula of Jacobi functions: For $x, y \in \mathbb{R}_+$,

$$\phi_{\lambda}(x)\phi_{\lambda}(y) = \int_0^\infty \phi_{\lambda}(z)K(x,y,z)\Delta(z)dx.$$

The kernel K(x,y,z) is non-negative and symmetric in the tree variables. Then the generalized translation T_x of f is defined as

$$T_x f(y) = \int_0^\infty f(z) K(x, y, z) \Delta(z) dz$$

and the convolution of f, g is given by

$$f * g(x) = \int_0^\infty f(y) T_x g(y) \Delta(y) dy.$$