On an Inequality of Paul Turan Concerning Polynomials-II

Abdullah Mir

Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, India

Received 24 March 2015; Accepted (in revised version) 6 April 2015

Abstract. Let \(P(z) \) be a polynomial of degree \(n \) and for any complex number \(\alpha \), let
\[D_\alpha P(z) = nP(z) + (\alpha - z)P'(z) \]
denote the polar derivative of the polynomial \(P(z) \) with respect to \(\alpha \). In this paper, we obtain inequalities for the polar derivative of a polynomial having all zeros inside a circle. Our results shall generalize and sharpen some well-known results of Turan, Govil, Dewan et al. and others.

Key Words: Polar derivative, polynomials, inequalities, maximum modulus, growth.

AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let \(P(z) \) be a polynomial of degree \(n \) and \(P'(z) \) be its derivative. Then according to the well-known Bernstein’s inequality [4] on the derivative of a polynomial, we have

\[
\max_{|z|=1} |P'(z)| \leq n \max_{|z|=1} |P(z)|. \tag{1.1}
\]

The equality holds in (1.1) if and only if \(P(z) \) has all its zeros at the origin.

For the class of polynomials \(P(z) \) having all zeros in \(|z| \leq 1 \), Turan [11] proved that

\[
\max_{|z|=1} |P'(z)| \geq \frac{n}{2} \max_{|z|=1} |P(z)|. \tag{1.2}
\]

The inequality (1.2) is best possible and becomes equality for \(P(z) = \alpha z^n + \beta \) where \(|\alpha| = |\beta| \).

In the literature, there already exists some refinements and generalizations of the inequality (1.2), for example see Aziz and Dawood [3], Govil [5], Dewan and Mir [6], Dewan, Singh and Mir [7], Mir, Dar and Dawood [10] etc.

*Corresponding author. Email address: mabdullah_mir@yahoo.co.in (A. Mir)
Inequality (1.2) was refined by Aziz and Dawood [3] and they proved under the same hypothesis that

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{2} \left\{ \max_{|z|=1} |P(z)| + \min_{|z|=1} |P(z)| \right\}. \quad (1.3)$$

As an extension of (1.3), it was shown by Govil [5], that if $P(z)$ has all its zeros in $|z| \leq k$, $k \leq 1$, then

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{1+k} \left\{ \max_{|z|=1} |P(z)| + \frac{1}{k^{n-1}} \min_{|z|=k} |P(z)| \right\}. \quad (1.4)$$

For the class of polynomials

$$P(z) = a_n z^n + \sum_{\nu=0}^{n-\mu} a_{n-\nu} z^{n-\nu}, \quad 1 \leq \mu \leq n,$$

of degree n having all its zeros in $|z| \leq k$, $k \leq 1$, Aziz and Shah [2] proved

$$\max_{|z|=1} |P'(z)| \geq \frac{n}{1+k\mu} \left\{ \max_{|z|=1} |P(z)| + \frac{1}{k^{n-1}} \min_{|z|=k} |P(z)| \right\}. \quad (1.5)$$

For $\mu = 1$, inequality (1.5) reduces to (1.4).

Let $D_\alpha P(z)$ denote the polar derivative of the polynomial $P(z)$ of degree n with respect to α, then

$$D_\alpha P(z) = nP(z) + (\alpha - z)P'(z).$$

Recently Dewan, Singh and Mir [7] besides proving some other results, also proved the following interesting generalization of (1.5).

Theorem 1.1. If

$$P(z) = a_n z^n + \sum_{\nu=0}^{n-\mu} a_{n-\nu} z^{n-\nu}, \quad 1 \leq \mu \leq n,$$

is a polynomial of degree n having all its zeros in $|z| \leq k$, $k \leq 1$, and δ is any complex number with $|\delta| \leq 1$, then for $|z| = 1$,

$$|D_\delta P(z)| \leq n \left(\frac{k^\mu + |\delta|}{1+k^n} \right) \max_{|z|=1} |P(z)| - n \left(\frac{1-|\delta|}{k^{n-\mu}(1+k^n)} \right) \min_{|z|=k} |P(z)|. \quad (1.6)$$

In this paper, we shall first prove a result which gives certain generalizations of the inequality (1.4) by considering polynomials having all zeros in $|z| \leq k$, $k \leq 1$ with s-fold zeros at $z = 0$. We shall also present a refinement of Theorem 1.1. We first prove the following result.