L^p Bounds for the Commutators of Rough Singular Integrals Associated with Surfaces of Revolution

Zhendong Niu, Kai Zhu* and Yanping Chen

Department of Applied Mathematics, University of Science and Technology Beijing, Beijing 100083, China

Received 25 Febraury 2015; Accepted (in revised version) 31 March 2015

Abstract. In this paper, we establish the $L^p(\mathbb{R}^{n+1})$ boundedness for the commutators of singular integrals associated to surfaces of revolution, $\{(t,\phi(|t|)):t\in\mathbb{R}^n\}$, with rough kernels $\Omega \in L(\log L)^2(\mathbb{S}^{n-1})$, if $\phi(|t|) = |t|$.

Key Words: Commutator, singular integral, surface of revolution, rough kernel.

AMS Subject Classifications: 42B20, 42B25

1 Introduction

The homogeneous singular integral operator T_{Ω} is defined by

$$T_{\Omega}f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy,$$

where $\Omega \in L^1(S^{n-1})$ satisfies the following conditions: (a) Ω is a homogeneous function of degree zero on $\mathbb{R}^n \setminus \{0\}$, i.e.,

$$\Omega(tx) = \Omega(x) \tag{1.1}$$

for any t > 0 and $x \in \mathbb{R}^n \setminus \{0\}$. (b) Ω has mean zero on S^{n-1} , the unit sphere in \mathbb{R}^n , i.e.,

$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0.$$
(1.2)

176

http://www.global-sci.org/ata/

©2015 Global-Science Press

^{*}Corresponding author. *Email addresses:* nzhendong@163.com (Z. Niu), kaizhu0116@126.com (K. Zhu), yanpingch@126.com (Y. Chen)

Z. D. Niu, K. Zhu and Y. P. Chen / Anal. Theory Appl., 31 (2015), pp. 176-183

The singular integral operator along the surface of revolution $\Gamma = \{(y, \phi(|y|)); y \in \mathbb{R}^n\}$ is defined by

$$T_{\phi,\Omega}f(x,x_{n+1}) = \operatorname{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(y)}{|y|^n} f(x-y,x_{n+1}-\phi(|y|)) dy.$$

In [9], Kim, Wainger, Wright and Ziesler proved the $L^p(\mathbb{R}^{n+1})$ boundedness of $T_{\phi,\Omega}$ when $\phi \in C^2([0,\infty))$ is convex, increasing, $\phi(0) = 0$ and $\Omega \in C^{\infty}(S^{n-1})$. In [2], Chen and Fan generalized the result in the case that Ω belongs to a block space introduced in [11]. In [10], Lu, Pan and Yang proved that when $\Omega \in H^1(S^{n-1})$ and ϕ satisfies some conditions, then $T_{\phi,\Omega}$ is bounded on $L^p(\mathbb{R}^{n+1})$.

Grafakos and Stefanov [6] introduced a class of kernel functions $F_{\alpha}(S^{n-1})$ which are not contained in $H^1(S^{n-1})$. When $\Omega \in F_{\alpha}(S^{n-1})$, $T_{\phi,\Omega}$ was studied by many authors [3,12, 13].

For a function $b \in L_{loc}(\mathbb{R}^n)$, let A be a linear operator on some measurable function space. Then the commutator between A and b is defined by [b,A]f(x) := b(x)Af(x) - A(bf)(x).

It has been proved by Hu [8] that $\Omega \in L(\log L)^2(\mathbb{S}^{n-1})$ is a sufficient condition for the commutator of singular integral to be bounded on $L^p(\mathbb{R}^n)$, which is defined by

$$[b,T_{\Omega}]f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} (b(x) - b(y))f(y)dy$$

Recently, Chen and Ding [1] established the L^p boundedness of the commutator of singular integrals with the kernel condition $\Omega \in F_{\alpha}(S^{n-1})$.

The commutator of $T_{\phi,\Omega}$ is defined by

$$[b, T_{\phi,\Omega}]f(x, x_{n+1}) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(y)}{|y|^n} (b(x, x_{n+1}) - b(x - y, x_{n+1} - \phi(|y|)))f(x - y, x_{n+1} - \phi(|y|))dy.$$

The main purpose of this paper is to investigate the L^p boundedness of $[b, T_{\phi,\Omega}]$ under the condition $\Omega \in L(\log L)^2(\mathbb{S}^{n-1})$, that is

$$\int_{S^{n-1}} |\Omega(x')| \log^2(2 + |\Omega(x')|) dx' < \infty.$$

The following theorem is the main result in this paper.

Theorem 1.1. Let Ω satisfy (1.1) and (1.2), $b \in BMO(\mathbb{R}^{n+1})$, $\phi(|t|) = |t|$. If $\Omega \in L(\log L)^2(\mathbb{S}^{n-1})$, then for all $1 , the commutator <math>[b, T_{\phi,\Omega}]$ is bounded on $L^p(\mathbb{R}^{n+1})$.

It has been proved in [4] that the $L^p(\mathbb{R}^n)$ boundedness of the commutator of oscillatory singular integral operator T_{ϕ} defined by

$$[b,T_{\phi}]f(x) = \operatorname{p.v.} \int_{\mathbb{R}^n} e^{i\phi(y)} \frac{\Omega(y)}{|y|^n} (b(x) - b(x-y)) f(x-y) dy$$