DOI: 10.4208/ata.2015.v31.n1.1

The Strong Approximation of Functions by Fourier-Vilenkin Series in Uniform and Hölder Metrics

T. V. Iofina and S. S. Volosivets*

Saratov State University, Faculty of Mathematics and Mechanics, Astrakhanskaya str., 83, 410012, Saratov, Russia

Received 15 May 2012; Accepted (in revised version) 15 January 2015

Abstract. We will study the strong approximation by Fourier-Vilenkin series using matrices with some general monotone condition. The strong Vallee-Poussin, which means of Fourier-Vilenkin series are also investigated.

Key Words: Vilenkin systems, strong approximation, generalized monotonicity.

AMS Subject Classifications: 40F05, 42C10, 43A55, 43A75

1 Introduction

Let $\mathbf{P} = \{p_n\}_{n=1}^{\infty}$ be a sequence of natural numbers such that $2 \le p_i \le N$, $i \in \mathbb{N} = \{1, 2, \dots\}$. By definition $\mathbb{Z}(p_j) = \{0, 1, \dots, p_j - 1\}$, $m_0 = 1$, $m_n = p_1 p_2 \cdots p_n$ for $n \in \mathbb{N}$. Then every $x \in [0, 1)$ has an expansion

$$x = \sum_{n=1}^{\infty} \frac{x_n}{m_n}, \quad x_n \in \mathbb{Z}(p_n), \quad n \in \mathbb{N}.$$
(1.1)

For $x = k/m_l$, $0 < k < m_l$, $k, l \in \mathbb{N}$, we take the expansion with a finite number of $x_n \neq 0$. Let $G(\mathbf{P})$ be the Abel group of sequences $\mathbf{x} = (x_1, x_2, \cdots)$, $x_n \in \mathbb{Z}(p_n)$, with addition $\mathbf{x} \oplus \mathbf{y} = \mathbf{z} = (z_1, z_2, \cdots)$, where $z_n \in \mathbb{Z}(p_n)$ and $z_n = x_n + y_n \pmod{p_n}$, $n \in \mathbb{N}$. We define maps $g : [0,1) \to G(\mathbf{P})$ and $\lambda : G(\mathbf{P}) \to [0,1)$ by formulas $g(x) = (x_1, x_2, \cdots)$, where x is in the form (1.1) and $\lambda(\mathbf{x}) = \sum_{i=1}^{\infty} x_i/m_i$, where $\mathbf{x} \in G(\mathbf{P})$. Then for $x, y \in [0,1)$, we can introduce $x \oplus y := \lambda(g(x) \oplus g(y))$, if $\mathbf{z} = g(x) \oplus g(y)$ does not satisfy equality $z_i = p_i - 1$ for all $i \ge i_0$. In a similar way, we introduce $x \oplus y$ and for all $x, y \in [0,1)$ generalized distance

^{*}Corresponding author. *Email addresses:* IofinaT@mail.ru (T. V. Iofina), VolosivetsSS@mail.ru (S. S. Volosivets)

 $\rho(x,y) = \lambda(g(x) \ominus g(y))$. Every $k \in \mathbb{Z}_+ = \{0,1,2,\cdots\}$ can be expressed uniquely in the form of

$$k = \sum_{n=1}^{\infty} k_n m_{n-1}, \quad k_n \in \mathbb{Z}_n, \quad n \in \mathbb{N}.$$
(1.2)

For a given $x \in [0,1)$ with expansion (1.1) and $k \in \mathbb{Z}_+$ with expansion (1.2), we set $\chi_k(x) = \exp(2\pi i \sum_{j=1}^{\infty} x_j k_j / p_j)$. The system $\{\chi_k\}_{k=0}^{\infty}$ is called a multiplicative or Vilenkin system. It is orthonormal and complete in L[0,1) and we have

$$\chi_k(x\oplus y) = \chi_k(x)\chi_k(y), \quad \chi_k(x\ominus y) = \chi_k(x)\overline{\chi_k(y)},$$

for a.e. *y*, whenever $x \in [0,1)$ is fixed (see [8, Section 1.5]).

The Fourier-Vilenkin coefficients and partial Fourier-Vilenkin sums for $f \in L^{1}[0,1)$ are defined by

$$\hat{f}(k) = \int_0^1 f(x)\overline{\chi_k(x)}dx, \quad k \in \mathbb{Z}_+, \quad S_n(f)(x) = \sum_{k=0}^{n-1} \hat{f}(k)\chi_k(x), \quad n \in \mathbb{N}.$$

If $f,g \in L^1[0,1)$, then $f * g(x) = \int_0^1 f(x \ominus t)g(t)dt = \int_0^1 f(t)g(x \ominus t)dt$. For Dirichlet kernel $D_n(t) = \sum_{k=0}^{n-1} \chi_k(t), n \in \mathbb{N}$, we have an equality $S_n(f)(x) = \int_0^1 f(x \ominus t) D_n(t) dt$. The space $L^p[0,1), 1 \le p < \infty$ consists of all measurable functions f on [0,1) with finite norm $||f||_p = 1$ $(\int_0^1 |f(t)|^p dt)^{1/p}$. If $\omega^*(f,\delta)_\infty := \sup\{|f(x) - f(y)| : x, y \in [0,1), \rho(x,y) < \delta\}, \delta \in [0,1]$, then $C^*[0,1)$ contains all functions f with property $\lim_{h\to 0} \omega^*(f,h)_\infty = 0$ and finite norm $||f||_\infty = 0$. $\sup_{x \in [0,1)} |f(x)|.$

Let us introduce a modulus of continuity $\omega^*(f,\delta)_p = \sup_{0 \le h \le \delta} \|f(x \ominus h) - f(x)\|_p$ in $L^{p}[0,1), 1 \leq p < \infty$. If $\mathcal{P}_{n} = \{f \in L^{1}[0,1): \hat{f}(k) = 0, k \geq n\}$, then $E_{n}(f)_{p} = \inf\{\|f - t_{n}\|_{p}, t_{n} \in \mathcal{P}_{n}\}$, $1 \le p \le \infty$. Let $\omega(\delta)$ be a function of modulus of continuity type ($\omega(\delta) \in \Omega$), i.e., $\omega(\delta)$ is continuous and increasing on [0,1) and $\omega(0) = 0$. Then the space $H_{\nu}^{\omega}[0,1)$ consists of $f \in L^p[0,1)$ $(1 \le p < \infty)$ or $f \in C^*[0,1)$ $(p = \infty)$ such that $\omega^*(f,\delta)_p \le C\omega(\delta)$, where C depends only on f. Denote by h_p^{ω} the subspace of H_p^{ω} consisting of all functions f such that $\lim_{h\to 0} \omega^*(f,h)_p / \omega(h) = 0$. The spaces $h_p^{\omega}[0,1)$ and $H_p^{\omega}[0,1), 1 \le p \le \infty$, with the norm $||f||_{p,\omega} = ||f||_p + \sup_{0 \le h \le 1} \omega^*(f,h)_p / \omega(h)$ are Banach ones. In $h_p^{\omega}[0,1)$ we can consider $E_n(f)_{p,\omega} = \inf\{\|f - t_n\|_{p,\omega}, t_n \in \mathcal{P}_n\}, n \in \mathbb{N}.$ Let $A = \{a_{nk}\}_{n,k=1}^{\infty}$ be a lower triangle matrix such that

$$a_{n,k} \ge 0, \quad n,k \in \mathbb{N}, \quad \sum_{k=1}^{n} a_{n,k} = 1.$$
 (1.3)

Using matrix A, we can define a summation method by formula

$$T_n(f)(x) = \sum_{k=1}^n a_{n,k} S_k(f)(x).$$