DOI: 10.4208/ata.2014.v30.n4.6

Some Characterizations of $VMO(\mathbb{R}^n)$

Yong Ding^{*} and Ting Mei

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Beijing 100875, China

Received 3 June 2014; Accepted (in revised version) 13 November 2014

Abstract. In this paper we give three characterizations of $VMO(\mathbb{R}^n)$ space, which are of John-Nirenberg type, Uchiyama-type and Miyachi-type, respectively.

Key Words: VMO space, John-Nirenberg inequality, multiplier, CMO space.

AMS Subject Classifications: 42B35, 42B20

1 Introduction

Suppose that *f* is a locally integrable function on \mathbb{R}^n and $Q \subset \mathbb{R}^n$ is a cube with sides paralleling to coordinate axis. Denote by f_Q the mean of *f* on *Q*, that is,

$$f_Q = \frac{1}{|Q|} \int_Q f(x) dx.$$

For a > 0, let

$$M_a(f) = \sup_{|Q| \le a} \frac{1}{|Q|} \int_Q |f(x) - f_Q| dx.$$

A locally integral function f is said to belong to $BMO(\mathbb{R}^n)$ if there exists a constant C > 0 such that $\sup_{a>0} M_a(f) \le C$. The minimal constant C is defined to be the $BMO(\mathbb{R}^n)$ norm of f and denoted by $||f||_*$.

In 1975, Sarason [7] defined the *VMO* function on \mathbb{R} and gave its characterization. A function *f* in *BMO*(\mathbb{R}) is said to belong to *VMO*(\mathbb{R}), if

$$M_0(f) := \lim_{a \to 0} M_a(f) = 0.$$

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. Email addresses: dingy@bnu.edu.cn (Y. Ding), meiting@mail.bnu.edu.cn (T. Mei)

Theorem 1.1 (see [7]). Let f belong to $BMO(\mathbb{R})$, then the following conditions are equivalent: (*i*) $f \in VMO(\mathbb{R})$;

(ii) f is in the BMO-closure of $UC(\mathbb{R}) \cap BMO(\mathbb{R})$;

(*iii*) $\lim_{|y|\to 0} ||\tau_y f - f||_* = 0$, where and in the sequel, $\tau_y f(x) = f(x-y)$;

(iv) f = u + Hv, where u and v belong to BUC(\mathbb{R}) and H denotes the Hilbert transform.

Here and in the sequel, $UC(\mathbb{R}^n)$ $(n \ge 1)$ denotes the space of complex valued, uniform continuous functions on \mathbb{R}^n and $BUC(\mathbb{R}^n) = L^{\infty}(\mathbb{R}^n) \cap UC(\mathbb{R}^n)$.

Using the similar idea as proving Theorem 1.1, it is easy to prove the following variant of Theorem 1.1 in higher dimensions, we omit the details here.

Theorem 1.2. Let f belong to $BMO(\mathbb{R}^n)$, then the following conditions are equivalent:

(i) f ∈ VMO(ℝⁿ);
(ii) f is in the BMO-closure of UC(ℝⁿ)∩BMO(ℝⁿ);

(*iii*) $\lim_{|y|\to 0} ||\tau_y f - f||_* = 0;$

(iv) $f = \phi_0 + \sum_{j=1}^n R_j \phi_j$, where $\phi_j \in BUC(\mathbb{R}^n)$ $(j = 0, 1, \dots, n)$ and R_j $(1 \le j \le n)$ denote the Riesz transforms, that is:

$$R_j f(x) = c_n$$
 p.v. $\int_{\mathbb{R}^n} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) dy$, where $c_n = \Gamma\left(\frac{n+1}{2}\right) \pi^{-\frac{n+1}{2}}$.

In the present paper, we will give the other characterizations of $VMO(\mathbb{R}^n)$. We first characterize $VMO(\mathbb{R}^n)$ by a John-Nirenberg type equation in Section 2. A characterization of $VMO(\mathbb{R}^n)$ of Uchiyama-type will be given in Section 3. As an application, we also give the characterization of $VMO(\mathbb{R}^n)$ of Miyachi-type in Section 4. In the last section, as a remark, we state that some results hold also for $CMO(\mathbb{R}^n)$, the *BMO*-closure of $C_0(\mathbb{R}^n)$, the space of all continuous functions on \mathbb{R}^n which vanish at infinity.

2 John-Nirenberg type characterization of $VMO(\mathbb{R}^n)$

For $f \in L_{\text{loc}}(\mathbb{R}^n)$, $\lambda > 0$ and a > 0, denote $J(f;\lambda,a)$ by

$$J(f;\lambda,a) := \sup_{|Q| \le a} \frac{1}{|Q|} \int_{Q} \exp\left(\frac{\lambda}{\|f\|_{*}} |f(x) - f_{Q}|\right) dx,$$

where the supremum is taken over all cubes Q in \mathbb{R}^n with $|Q| \le a$. In 1961, John and Nirenberg [4] proved that if $f \in BMO(\mathbb{R}^n)$, then there exist $\lambda > 0$ and $C_1 > 0$, such that

$$\sup_{a>0} J(f;\lambda,a) \leq C_1,$$

which is called the John-Nirenberg inequality. In this section, we give a characterization of $VMO(\mathbb{R}^n)$ by $J(f;\lambda,a)$.