Approximation of the Cubic Functional Equations in Lipschitz Spaces

A. Ebadian², N. Ghobadipour¹, I. Nikoufar² and M. Eshaghi Gordji^{3,*}

¹ Department of Mathematics, Urmia University, Urmia, Iran

² Department of Mathematics, Payame Noor University, Iran

³ Department of Mathematics, Semnan University, P. O. Box 35195–363, Semnan, *Iran*

Received 3 September 2011; Accepted (in revised version) 17 June 2014

Abstract. Let \mathcal{G} be an Abelian group and let $\rho: \mathcal{G} \times \mathcal{G} \to [0,\infty)$ be a metric on \mathcal{G} . Let \mathcal{E} be a normed space. We prove that under some conditions if $f: \mathcal{G} \to \mathcal{E}$ is an odd function and $C_x: \mathcal{G} \to \mathcal{E}$ defined by $C_x(y) := 2f(x+y) + 2f(x-y) + 12f(x) - f(2x+y) - f(2x-y)$ is a cubic function for all $x \in \mathcal{G}$, then there exists a cubic function $C: \mathcal{G} \to \mathcal{E}$ such that f-C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2f(x+y)+2f(x-y)+12f(x)-f(2x+y)-f(2x-y)=0 on Lipschitz spaces.

Key Words: Cubic functional equation, Lipschitz space, stability.

AMS Subject Classifications: 39B82, 39B52

1 Introduction

Let \mathcal{G} be an abelian group and \mathcal{E} a normed space. Let $S(\mathcal{E})$ be a family of subsets of \mathcal{E} . We say that $S(\mathcal{E})$ is linearly invariant if it is closed under the addition and scalar multiplication defined as usual sense and translation invariant, i.e., $x + A \in S(\mathcal{E})$, for every $A \in S(\mathcal{E})$ and every $x \in \mathcal{E}$ (see [2]). It is easy to verify that $S(\mathcal{E})$ contains all singleton subsets of \mathcal{E} . In particular, $CB(\mathcal{E})$ the family of all closed balls with center at zero is a linearly invariant family in a normed vector space \mathcal{E} . By $F(\mathcal{G},S(\mathcal{E}))$ we denote the family of all functions $f:\mathcal{G} \to \mathcal{E}$ such that $\mathrm{Im} f \subset A$ for some $A \in S(\mathcal{E})$. We say that $F(\mathcal{G},S(\mathcal{E}))$ admits a left invariant mean (briefly LIM), if the family $S(\mathcal{E})$ is linearly invariant and there exists a linear operator $\Gamma: F(\mathcal{G}, \mathcal{S}(\mathcal{E})) \to \mathcal{E}$ such that

(i) if $\operatorname{Im} f \subset A$ for some $A \in S(\mathcal{E})$, then $\Gamma[f(\cdot)] \in A$,

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email addresses:* a.ebadian@urmia.ac.ir (A. Ebadian), ghobadipour.n@gmail.com (N. Ghobadipour), nikoufar@pnu.ac.ir (I. Nikoufar), meshaghi@semnan.ac.ir, madjid.eshaghi@gmail. com (M. Eshaghi Gordji)

A. Ebadian et al. / Anal. Theory Appl., 30 (2014), pp. 354-362

(ii) if
$$f \in F(\mathfrak{G}, S(\mathcal{E}))$$
 and $a \in \mathfrak{G}$, then $\Gamma[f^a(\cdot)] = \Gamma[f(\cdot)]$,

where $f^a(\cdot) = f(\cdot + a)$ (see [14, 20]). Following [3] and [20], let $S(\mathcal{E})$ be a linearly invariant family and $\mathbf{d}: \mathcal{G} \times \mathcal{G} \rightarrow S(\mathcal{E})$ be a set-valued function such that

$$\mathbf{d}(x+a,y+a) = \mathbf{d}(a+x,a+y) = \mathbf{d}(x,y),$$

for all $a, x, y \in \mathcal{G}$. A function $f: \mathcal{G} \to \mathcal{E}$ is said to be **d**-Lipschitz if $f(x) - f(y) \in \mathbf{d}(x, y)$ for all $x, y \in \mathcal{G}$.

Let (\mathfrak{G}, ρ) be a metric group and \mathcal{E} a normed space. A function $\alpha_f: \mathbb{R}^+ \to \mathbb{R}^+$ is a module of continuity of $f: \mathfrak{G} \to \mathcal{E}$ if $\rho(x, y) \leq r$ implies $||f(x) - f(y)|| \leq \alpha_f(r)$ for every r > 0 and every $x, y \in \mathfrak{G}$. A function $f: \mathfrak{G} \to \mathcal{E}$ is called Lipschitz function if it satisfies the condition

$$\|f(x) - f(y)\| \le L\rho(x, y)$$
(1.1)

for every $x, y \in \mathcal{G}$. We denote by lip(f) the smallest constant $L \in \mathbb{R}^+$ satisfying the condition (1.1). By $Lip^0(\mathcal{G}, \mathcal{E})$ we denote the normed space of all Lipschitz functions $f : \mathcal{G} \to \mathcal{E}$ with the norm defined by the formula

$$||f||_{Lip^0} := ||f(0)|| + \operatorname{lip}(f).$$

In particular, $Lip(\mathfrak{G}, \mathcal{E})$ the space of all bounded Lipschitz functions is a subspace of $Lip^0(\mathfrak{G}, \mathcal{E})$ and with the norm defined by

$$||f||_{Lip} := ||f||_{\sup} + \operatorname{lip}(f)$$

is another normed space (see [20]).

Ulam [21] in 1940 stated the following problem, called now as the problem of stability of functional equations. Let *X* be an abelian group and *Y* an abelian group with a metric *d*. Let $\epsilon > 0$ be given. Does there exist $\lambda > 0$ such that if $f : X \to Y$ satisfies

$$d[f(x+y),f(x)+f(y)] < \epsilon$$

for all $x, y \in X$, then there exists an additive function $A: X \to Y$ with

$$d[f(x),A(x)] < \lambda$$

for all $x \in X$?

In the next year D. H. Hyers [16] proved the problem for the Cauchy functional equation. The result of Hyers was generated by Th. M. Rassias [18]. For more details about the results concerning such problems the reader is referred to [1,5,19].

Recently, S. Czerwik and K. Dlutek [4], established the stability of quadratic functional equation

$$f(x+y)+f(x-y)=2f(x)+2f(y)$$

in Lipschitz spaces. In this paper, we investigate the same results for cubic functional equation

$$2f(x+y)+2f(x-y)+12f(x)-f(2x+y)-f(2x-y)=0.$$