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Abstract. For a polynomial p(z) of degree n which has no zeros in |z| <1, Dewan et
al., (K. K. Dewan and Sunil Hans, Generalization of certain well known polynomial
inequalities, J. Math. Anal. Appl., 363 (2010), 38—41) established

@+ L] < 5{ (] + 145 maxtpa) - (14| -[£]) mimipa1},

|z[=1

for any complex number § with || <1 and |z| =1. In this paper we consider the
operator B, which carries a polynomial p(z) into

Blp(z)] = Aop(z) #0122, (P2) 202,

where Ag, A1, and A, are such that all the zeros of u(z) =Ag+c(n,1)A1z+c(n,2)A22? lie
in the half plane |z| <|z—n/2|. By using the operator B, we present a generalization of
result of Dewan. Our result generalizes certain well-known polynomial inequalities.
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1 Introduction and statement of results
Let p(z) be a polynomial of degree n and p’(z) its derivative. Then it is well known that

fr‘lwf!r)( )|<nﬂa>1<\i9( z)|, (1.1)
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and

‘angﬁllp( z)| <R" ﬁwflp( z)|. (1.2)
Inequality (1.1) is a famous result due to Bernstein [7], whereas inequality (1.2) is a simple
consequence of maximum modulus principle (see [16]). Both the above inequalities are
sharp and equality in each holds for the polynomials having all its zeros at the origin.
For the class of polynomials having no zeros in |z| <1, inequalities (1.1) and (1.2) have
respectively been replaced by

ﬁwflp( z)| <5 ﬁwflp( z)|, (1.3)
and
R"+1
< 14
|an%§1"9( z)|< 5 maflp( z)|. (1.4)

Inequality (1.3) was conjectured by Erdds and later proved by Lax [13], whereas inequal-
ity (1.4) was proved by Ankeny and Rivlin [1], for which they made use of (1.3). Both
these inequalities are also sharp and equality in each holds for polynomials having all its
zeros on |z| =1.

Aziz and Dawood [4] used min||_; |p(z)| to obtain a refinement of inequalities (1.3)
and (1.4) by demonstrating if p(z) is a polynomial of degree n which does not vanish in
|z| <1, then

n
< _ ) 1.5
max|p/(2)] < 5 { max|p(z) | —min|p(z) | 1.5
and
R"+1 R"—1
‘an?g;l\iﬂ( )\S(—z )rlr}wflp !—(72 )ﬁ“f}’P z)|. (1.6)

Both these inequalities are also sharp and equality in each holds for polynomials having
all its zeros on |z|=1.

As refinement of inequalities (1.5) and (1.6), Dewan et al. [8,9] proved that under the
same hypothesis, for every || <1, R>1and |z| =1 we have

v @+ pta| < 3 { (15| 3 mash@i= (143 - E ) mnbr}, a7

|z|=1 |z|=1

and

ey +p(55) vie)| <5 { (R +6 (55
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)max|p(z)|
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)min|p(z)|}. (18)
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