DOI: 10.4208/ata.2014.v30.n2.7

On Some Class of *n*-Normed Generalized Difference Sequences Related to ℓ_p -Space

Binod Chandra Tripathy^{1,*}, Inder Kumar Rana² and Stuti Borgohain²

 ¹ Mathematical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, GUWAHATI-781035, India
 ² Department of Mathematics, Indian Institute of Technology, Powai, MUMBAI 400 076, India

Received 10 December 2013; Accepted (in revised version) 27 February 2014

Available online 30 June 2014

Abstract. In this paper, we introduce the class of *n*-normed generalized difference sequences related to ℓ_p -space. Some properties of this sequence space like solidness, symmetricity, convergence-free etc. are studied. We obtain some inclusion relations involving this sequence space.

Key Words: Generalized difference operator, *n*-norm, *n*-Banach space, symmetricity, solidness, convergence free, completeness.

AMS Subject Classifications: 40A05, 40A25, 40A30, 40C05

1 Introduction

The notion of *n*-normed space was studied at the initial stage by Gahler [7], Misiak [10], Gunawan [8] and many others from different aspects.

Let $n \in N$ and X be a real vector space. A real valued function on X^n satisfying the following $\|\cdot, \cdots\|$ four properties:

- 1. $||(z_1, z_2, \dots, z_n)||_n = 0$ if and only if z_1, z_2, \dots, z_n are linearly dependent;
- 2. $||(z_1, z_2, \dots, z_n)||_n$ is invariant under permutation;
- 3. $||(z_1, z_2, \dots, z_{n-1}, \alpha z_n)||_n = ||\alpha|| ||(z_1, z_2, \dots, z_n)||_n$, for all $\alpha \in R$;
- 4. $||(z_1, z_2, \cdots, z_{n-1}, x+y)||_n \le ||(z_1, z_2, \cdots, z_{n-1}, x)||_n + ||(z_1, z_2, \cdots, z_{n-1}, y)||_n;$

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email addresses:* tripathybc@yahoo.com (B. C. Tripathy), ikr@iitb.ac.in (I. K. Rana), stutiborgohain@yahoo.com (S. Borgohain)

is called an *n*-norm on X and the pair $(X, \|, \cdot, \cdot \|_n)$ is called an *n*-normed space.

Kizmaz [9] studied the notion of difference sequence spaces at the initial stage. Kizmaz [9] investigated the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ of crisp sets. The notion is defined as follows:

$$Z(\Delta) = \{x = (x_k) : (\Delta x_k) \in Z\},\$$

for $Z = \ell_{\infty}$, *c* and c_0 , where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$, for all $k \in N$. The above spaces are Banach spaces, normed by

$$\|x\|_{\Delta} = \|x_1\| + \sup_k \|\Delta x_k\|.$$

The idea of Kizmaz [9] was applied to introduce different types of difference sequence spaces and study their different properties by Tripathy (see [13, 14]), Tripathy, Altin and Et [15], Tripathy and Baruah (see [16, 17]), Tripathy abd Borgohain [18], Tripathy and Chandra [19], Tripathy, Choudhary and Sarma [20], Tripathy and Dutta [21], Tripathy and Esi (see [22, 23]), Tripathy, Esi and Tripathy [24], Tripathy and Mahanta [25] and many others.

Tripathy and Esi [22] introduced the new type of difference sequence spaces, for fixed $m \in N$,

$$Z(\Delta_m) = \{x = (x_k) : (\Delta_m x_k) \in Z\},\$$

for $Z = \ell_{\infty}$, c and c_0 , where $\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$, for all $k \in N$.

This generalizes the notion of difference sequence spaces studied by Kizmaz [9]. The above spaces are Banach spaces, normed by

$$||x||_{\Delta_m} = \sum_{r=1}^m ||x_r|| + \sup_k ||\Delta_m x_k||.$$

Tripathy, Esi and Tripathy [24] further generalized this notion and introduced the following notion. For $m \ge 1$ and $n \ge 1$,

$$Z(\Delta_m^n) = \{x = (x_k) : (\Delta_m^n x_k) \in Z\},\$$

for $Z = \ell_{\infty}$, *c* and c_0 .

This generalized difference has the following binomial representation,

$$\Delta_m^n x_k = \sum_{r=0}^n (-1)^r \binom{n}{r} x_{k+rm}.$$
(1.1)

Sargent [12] introduced the crisp set sequence space $m(\phi)$ and studied some properties of this space. Later on it was studied from the sequence space point of view and some matrix classes were characterized with one member as $m(\phi)$ by Rath and Tripathy [11]. Afterwards the notion was further investigated by Esi [5], Tripathy and Borgohain [18], Tripathy and Sen [27] and others. In this article we introduce the class of sequences $(m(\phi, \Delta_p^q), \|\cdots, \|_n)$ with respect to *n*-norm.