Complex and *p***-Adic Meromorphic Functions** f'P'(f), g'P'(g) **Sharing a Small Function**

Alain Escassut¹, Kamal Boussaf¹ and Jacqueline Ojeda^{2,*}

¹ Laboratoire de Mathematiques, UMR 6620, Université Blaise Pascal, Les Cézeaux, Aubiere 63171, France

² Departamento de Matematica, Facultad de Ciencias Fsicasy Matematicas, Universidad de Concepcion, Concepcion, Chile

Received 10 September 2013; Accepted (in revised version) 1 March 2014

Available online 31 March 2014

Abstract. Let \mathbb{K} be a complete algebraically closed *p*-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for *p*-adic meromorphic functions in order to prove results of uniqueness in value sharing problems, both on \mathbb{K} and on \mathbb{C} . Let *P* be a polynomial of uniqueness for meromorphic functions in \mathbb{K} or \mathbb{C} or in an open disk. Let *f*, *g* be two transcendental meromorphic functions in the whole field \mathbb{K} or in \mathbb{C} or meromorphic functions in an open disk of \mathbb{K} that are not quotients of bounded analytic functions. We show that if f'P'(f) and g'P'(g) share a small function α counting multiplicity, then f = g, provided that the multiplicity order of zeros of *P'* satisfy certain inequalities. A breakthrough in this paper consists of replacing inequalities $n \ge k+2$ or $n \ge k+3$ used in previous papers by Hypothesis (G). In the *p*-adic context, another consists of giving a lower bound for a sum of *q* counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.

Key Words: Meromorphic, nevanlinna, sharing value, unicity, distribution of values.

AMS Subject Classifications: 12J25, 30D35, 30G06

1 Introduction

Notation and Definition 1.1. Let \mathbb{K} be an algebraically closed field of characteristic zero, complete with respect to an ultrametric absolute value $|\cdot|$. We will denote by \mathbb{E} a field that is either \mathbb{K} or \mathbb{C} . Throughout the paper we denote by *a* a point in \mathbb{K} . Given $R \in [0, +\infty]$ we define disks $d(a, R) = \{x \in \mathbb{K} | |x-a| \le R\}$ and disks $d(a, R^-) = \{x \in \mathbb{K} | |x-a| < R\}$.

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email addresses:* alain.escassut@math.univ-bpclermont.fr (A. Escassut), kamal.boussaf@math.univ-bpclermont.fr (K. Boussaf), jacqojeda@udec.cl (J. Ojeda)

A polynomial $Q(X) \in \mathbb{E}[X]$ is called *a polynomial of uniqueness for a family of functions* \mathcal{F} *defined in a subset of* \mathbb{E} if Q(f) = Q(g) implies f = g. The definition of polynomials of uniqueness was introduced in [19] by P. Li and C. C. Yang and was studied in many papers [11, 13, 20] for complex functions and in [1, 2, 9, 10, 17, 18], for *p*-adic functions.

Throughout the paper we will denote by P(X) a polynomial in $\mathbb{E}[X]$ such that P'(X) is of the form $b\prod_{i=1}^{l} (X-a_i)^{k_i}$ with $l \ge 2$ and $k_1 \ge 2$. The polynomial *P* will be said *to satisfy Hypothesis* (*G*) if $P(a_i) + P(a_j) \ne 0$, $\forall i \ne j$.

We will improve the main theorems obtained in [5] and [6] with the help of a new hypothesis denoted by Hypothesis (G) and by thorougly examining the situation with *p*-adic and complex analytic and meromorphic functions in order to avoid a lot of exclusions. Moreover, we will prove a new theorem completing the 2nd Main Theorem for *p*-adic meromorphic functions. Thanks to this new theorem we will give more precisions in results on value-sharing problems.

Notation 1.1. Let *L* be an algebraically closed field, let $P \in L[x] \setminus L$ and let $\Xi(P)$ be the set of zeros *c* of *P*' such that $P(c) \neq P(d)$ for every zero *d* of *P*' other than *c*. We denote by $\Phi(P)$ its cardinal.

We denote by $\mathcal{A}(\mathbb{E})$ the \mathbb{E} -algebra of entire functions in \mathbb{E} , by $\mathcal{M}(\mathbb{E})$ the field of meromorphic functions in \mathbb{E} , i.e., the field of fractions of $\mathcal{A}(\mathbb{E})$ and by $\mathbb{E}(x)$ the field of rational functions. Throughout the paper, we denote by $\mathcal{A}(d(a, R^-))$ the \mathbb{K} -algebra of analytic functions in $d(a, R^-)$ i.e., the \mathbb{K} -algebra of power series $\sum_{n=0}^{\infty} a_n(x-a)^n$ converging in $d(a, R^-)$ and we denote by $\mathcal{M}(d(a, R^-))$ the field of meromorphic functions inside $d(a, R^-)$, i.e., the field of fractions of $\mathcal{A}(d(a, R^-))$. Moreover, we denote by $\mathcal{A}_b(d(a, R^-))$ the \mathbb{K} -subalgebra of $\mathcal{A}(d(a, R^-))$ consisting of the bounded analytic functions in $d(a, R^-)$, i.e., which satisfy $\sup_{n \in \mathbb{N}} |a_n| R^n < +\infty$. We denote by $\mathcal{M}_b(d(a, R^-))$ the field of fractions of $\mathcal{A}_b(d(a, R^-))$ and finally, we denote by $\mathcal{A}_u(d(a, R^-))$ the set of unbounded analytic functions in $d(a, R^-)$, i.e., $\mathcal{A}(d(a, R^-)) \setminus \mathcal{A}_b(d(a, R^-))$. Similarly, we set $\mathcal{M}_u(d(a, R^-)) =$ $\mathcal{M}(d(a, R^-)) \setminus \mathcal{M}_b(d(a, R^-))$.

Theorem 1.1 (see [9]). Let $P(X) \in \mathbb{K}[X]$. If $\Phi(P) \ge 2$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{K})$. If $\Phi(P) \ge 3$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$ and for $\mathcal{A}_u(d(a, \mathbb{R}^-))$. If $\Phi(P) \ge 4$ then P is a polynomial of uniqueness for $\mathcal{M}_u(d(a, \mathbb{R}^-))$.

Let $P(X) \in \mathbb{C}[X]$. If $\Phi(P) \ge 3$ then P is a polynomial of uniqueness for $\mathcal{A}(\mathbb{C})$. If $\Phi(P) \ge 4$ then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{C})$.

Concerning polynomials such that P' has exactly two distinct zeros, we know other results:

Theorem 1.2 (see [1, 2, 18]). Let $P \in \mathbb{K}[x]$ be such that P' has exactly two distinct zeros γ_1 of order c_1 and γ_2 of order c_2 with $\min\{c_1, c_2\} \ge 2$. Then P is a polynomial of uniqueness for $\mathcal{M}(\mathbb{K})$.

Theorem 1.3 (see [9,17]). Let $P \in \mathbb{K}[x]$ be of degree $n \ge 6$ be such that P' only has two distinct zeros, one of them being of order 2. Then P is a polynomial of uniqueness for $\mathcal{M}_u(d(0, R^-))$.