Two Weighted *BMO* **Estimates for the Maximal Bochner-Riesz Commutator**

Dan Zou, Xiaoli Chen* and Dongxiang Chen

Department of Mathematics, Jiangxi Normal University, Nanchang, 330022, P.R. China.

Received 17 October 2011

Abstract. In this note, the author prove that maximal Bocher-Riesz commutator $B_{\delta,*}^b$ generated by operator $B_{\delta,*}$ and function $b \in BMO(\omega)$ is a bounded operator from $L^p(\mu)$ into $L^p(\nu)$, where $\omega \in (\mu\nu^{-1})^{\frac{1}{p}}, \mu, \nu \in A_p$ for $1 . The proof relies heavily on the pointwise estimates for the sharp maximal function of the commutator <math>B_{\delta,*}^b$.

Key Words: Bocher-Riesz operator, commutator, weighted $BMO(\omega)$ space.

AMS Subject Classifications: 42B25, 42B30

1 Introduction

It is well-known that the commutator is an important integral operator and plays a key role in harmonic analysis. In 1965, Calderón [1, 2] studied a kind of commutators, appearing in Cauchy integral problems of Lip-line. Subsequently, Coifman, Rochberg and Weiss [3] obtained the boundedness of singular integral commutators on $L^p(\mathbb{R}^n)$ for 1 . In 1995, Lu [4] gave the definition of the maximal Bochner-Riesz operator and its maximal commutator as the following.

Definition 1.1. Let $\widehat{B_t^{\delta}(f)}(\xi) = (1-t^2|\xi|^2)^{\delta} \widehat{f}(\xi)$ and $\psi_t^{\delta}(z) = t^{-n} \psi^{\delta}(\frac{z}{t})$ for t > 0. We denote

$$B^b_{\delta,t}(f)(x) = \int_{\mathbb{R}^n} [b(x) - b(y)] \psi^\delta_t(x-y) f(y) dy.$$

The maximal Bochner-Riesz operator and maximal commutator are defined respectively by

$$B^{\delta}_*(f)(x) = \sup_{t>0} |\psi^{\delta}_t * f(x)|,$$

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. *Email addresses:* littleli_chen@163.com (X. L. Chen), chendx020@yahoo.com.cn (D. X. Chen)

and

$$B^b_{\delta,*}(f)(x) = \sup_{t>0} |B^b_{\delta,t}(f)(x)|.$$

In 1996, Lu and Hu [4,5] established the boundedness of Bochner-Riesz commutator on $L^p(\mathbb{R}^n)$ (1 \infty). In 1997, Yang and Lu [6] studied the continuity of Bochner-Riesz commutator on Herz-type spaces. In 2003, Lu and Liu [7] established the $L(\log L)$ type estimate and weighted weak type estimate of Bochner-Riesz maximal commutator. In 2004, Liu [7] established the continuity of Bochner-Riesz maximal commutator on Triebel-Lizorkin space. The main purpose of this paper is to give the two-weighted estimate of the maximal Bochner-Riesz commutator.

Our main result is stated as follows.

Theorem 1.1. Let $B_{\delta,*}^b$ be defined as before, and $b \in BMO(\omega)$, $\omega = (\mu\nu^{-1})^{\frac{1}{p}}$, $\mu(x), \nu(x) \in A_p$. If $\delta > \frac{n-1}{2}$, then there exists a positive constant *C* such that

$$||B_{\delta,*}^{b}(f)(x)||_{L^{p}(\nu)} \leq C ||b||_{*,\omega} ||f||_{L^{p}(\mu)}.$$

2 Some preliminaries and main results

Standard real analysis tools as the maximal function M, f the sharp function M^{\sharp}, f naturally carries over to this context. Let B=B(x,r), B(x,kr)=kB, Define the maximal functions

$$Mf(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| dy,$$

$$M^{\sharp}f(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y) - f_{B}| dy \approx \sup_{x \in B} \inf_{C} \frac{1}{|B|} \int_{B} |f(y) - C| dy,$$

where $f_B = \frac{1}{|B|} \int_B |f(y)| dy$.

Let ω be a weight function, we will say that a locally integrable function b(x) belongs to the weighted $BMO(\omega)$ space for $\omega \in A_p$, if

$$\|b\|_{*,\omega} = \sup_{B} \frac{1}{\omega(B)} \int_{B} |b(x) - b_{B}| dx < \infty,$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$. Obviously, for the case ω being the Lebesgue measure, $BMO(\omega) = BMO$.

A variant of the maximal operator

$$M_{\sigma}f(x) = (M(|f|^{\sigma}))^{\frac{1}{\sigma}}(x),$$

and

$$M^{\sharp}_{\sigma}f(x) = (M^{\sharp}(|f|^{\sigma}))^{\frac{1}{\sigma}}(x)$$

will become the main tool in our scheme.