Some Estimates for Commutators of Fractional Integrals Associated to Operators with Gaussian Kernel Bounds on Weighted Morrey Spaces

Hua Wang*

Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, China

Received 22 October 2012

Abstract. Let *L* be the infinitesimal generator of an analytic semigroup on $L^2(\mathbf{R}^n)$ with Gaussian kernel bound, and let $L^{-\alpha/2}$ be the fractional integrals of *L* for $0 < \alpha < n$. In this paper, we will obtain some boundedness properties of commutators $[b, L^{-\alpha/2}]$ on weighted Morrey spaces $L^{p,\kappa}(w)$ when the symbol *b* belongs to $BMO(\mathbf{R}^n)$ or the homogeneous Lipschitz space.

Key Words: Gaussian upper bound, fractional integral, weighted Morrey space, commutator.

AMS Subject Classifications: 42B20, 42B35

1 Introduction

Suppose that *L* is the infinitesimal generator of an analytic semigroup $\{e^{-tL}\}_{t>0}$ on $L^2(\mathbb{R}^n)$ with a kernel $p_t(x,y)$ satisfying a Gaussian upper bound; that is, there exist positive constants *C* and *A* such that for all $x, y \in \mathbb{R}^n$ and all t > 0, we have

$$|p_t(x,y)| \le \frac{C}{t^{n/2}} e^{-A \frac{|x-y|^2}{t}}.$$
(1.1)

Throughout this paper, we assume that the semigroup $\{e^{-tL}\}_{t>0}$ has a kernel satisfying (1.1). This property is satisfied by a large class of differential operators, as is seen in [7].

For any $0 < \alpha < n$, the fractional integral $L^{-\alpha/2}$ associated to the operator *L* is defined by

$$L^{-\alpha/2}f(x) = \frac{1}{\Gamma(\alpha/2)} \int_0^\infty e^{-tL}(f)(x) t^{\alpha/2 - 1} dt.$$
 (1.2)

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. Email address: wanghua@pku.edu.cn (H. Wang)

Note that if $L = -\Delta$ is the Laplacian on \mathbb{R}^n , then $L^{-\alpha/2}$ is the classical fractional integral operator I_{α} , which is given by (see [20])

$$I_{\alpha}f(x) = \frac{\Gamma(\frac{n-\alpha}{2})}{2^{\alpha}\pi^{\frac{n}{2}}\Gamma(\frac{\alpha}{2})} \int_{\mathbf{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy.$$

Let *b* be a locally integrable function on \mathbb{R}^n . The commutator of *b* and $L^{-\alpha/2}$ is defined as follows

$$[b, L^{-\alpha/2}](f)(x) = b(x)L^{-\alpha/2}(f)(x) - L^{-\alpha/2}(bf)(x).$$
(1.3)

The first result on the theory of commutators is obtained by Coifman, Rochberg and Weiss in [3]. Since then, many authors have been interested in studying this theory. When $0 < \alpha < n$, $1 and <math>1/q = 1/p - \alpha/n$, Chanillo [2] proved that the commutator $[b, I_\alpha]$ is bounded from $L^p(\mathbf{R}^n)$ to $L^q(\mathbf{R}^n)$ whenever $b \in BMO(\mathbf{R}^n)$. Paluszyński [18] showed that $b \in \dot{\Lambda}_{\beta}(\mathbf{R}^n)$ (homogeneous Lipschitz space) if and only if $[b, I_\alpha]$ is bounded from $L^p(\mathbf{R}^n)$ to $L^s(\mathbf{R}^n)$, where $0 < \beta < 1$, $1 and <math>1/s = 1/p - (\alpha + \beta)/n$. For the weighted case, Segovia and Torrea [19] proved that when $b \in BMO(\mathbf{R}^n)$ and $w \in A_{p,q}$ (Muckenhoupt weight class), $[b, I_\alpha]$ is bounded from $L^p(w^p)$ to $L^q(w^q)$.

In 2004, by using a new sharp maximal function introduced in [14], Duong and Yan [7] extended the result of [2] from $(-\Delta)$ to the more general operator *L* defined above. More precisely, they showed that

Theorem 1.1. Let $0 < \alpha < n$, $1 and <math>1/q = 1/p - \alpha/n$. If $b \in BMO(\mathbb{R}^n)$, then the commutator $[b, L^{-\alpha/2}]$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$.

In 2008, Auscher and Martell [1] considered the weighted case and obtained the following result (see also [4]).

Theorem 1.2. Let $0 < \alpha < n$, $1 , <math>1/q = 1/p - \alpha/n$ and $w \in A_{p,q}$. If $b \in BMO(\mathbb{R}^n)$, then the commutator $[b, L^{-\alpha/2}]$ is bounded from $L^p(w^p)$ to $L^q(w^q)$.

On the other hand, in 2009, Komori and Shirai [13] first introduced the weighted Morrey spaces $L^{p,\kappa}(w)$ which could be viewed as an extension of weighted Lebesgue spaces, and investigated the boundedness of the Hardy-Littlewood maximal operator, singular integral operator and fractional integral operator on these weighted spaces. Moreover, they also proved the following theorem.

Theorem 1.3. Let $0 < \alpha < n$, $1 , <math>1/q = 1/p - \alpha/n$, $0 < \kappa < p/q$ and $w \in A_{p,q}$. If $b \in BMO(\mathbb{R}^n)$, then the commutator $[b, I_\alpha]$ is bounded from $L^{p,\kappa}(w^p, w^q)$ to $L^{q,\kappa q/p}(w^q)$.

The purpose of this paper is to study the boundedness of $[b, L^{-\alpha/2}]$ on the weighted Morrey spaces $L^{p,\kappa}(w)$ when $b \in BMO(\mathbb{R}^n)$ or $b \in \dot{\Lambda}_{\beta}(\mathbb{R}^n)$. Our main results are formulated as follows.