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Abstract. In this paper, the authors establish the boundedness of multilinear commu-
tators generated by a Marcinkiewicz integral operator and a RBMO(µ) function on
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1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley g function, Marcinkiewicz [1] introduced
the operator

M( f )(x)=
(∫ π

0

|F(x+t)+F(x−t)−2F(x)|2

t3
dt
) 1

2
, x∈ [0,2π],

where F(x) =
∫ x

0 f (t)dt. This operator is now called the Marcinkiewicz integral. Zyg-
mund [2] proved that the operator M is bounded on the Lebesgue space Lp([0,2π]) for
p∈(1,∞). Stein [3] generalized the above Marcinkiewicz integral to the following higher-
dimensional case. Let Ω be homogeneous of degree zero in Rd for d≥ 2, integrable and
have mean value zero on the unit sphere Sd−1. The higher-dimensional Marcinkiewicz
integral is defined by

MΩ( f )(x)=
(∫ ∞

0

∣∣∣
∫

|x−y|≤t

Ω(x−y)

|x−y|d−1
f (y)dy

∣∣∣
2 dt

t3

) 1
2
, x∈Rd.
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Stein in [3] proved that if Ω∈Lipδ(S
d−1) for some δ∈(0,1], then MΩ is bounded on Lp(Rd)

for any p∈(1,2], and is also bounded from L1(Rd) to L1,∞(Rd). Since then, a lot of papers
focus on this operator. For some recent development, we mention that Al-Salman et al.
in [4] obtained the Lp(Rd)-boundedness for p ∈ (1,∞) of MΩ if Ω ∈ L(logL)1/2(Sd−1);
Fan and Sato in [5] proved that MΩ is bounded from the Lebesgue space L1(Rd) to
the weak Lebesgue space L1,∞(Rd) if Ω ∈ LlogL(Sd−1). There are many other interest-
ing works for this operator, among them we refer to [6, 7] and their references. On the
other hand, Torchinsky and Wang in [8] first introduced the commutator generated by
the Marcinkiewicz integral MΩ and the classical BMO(Rd) function, and established its
Lp(Rd)-boundedness for p∈ (1,∞) when Ω∈Lipδ(S

d−1) for some δ∈ (0,1]. Such bound-
edness of this commutator is further discussed in [9, 10] when Ω only satisfies certain
size conditions. Moreover, its weak type endpoint estimate is obtained in [11, 12] when
Ω∈Lipδ(S

d−1) for some δ∈(0,1], and its weight weak type endpoint estimate is obtained
in [13, 14] when Ω satisfies a kind of Dini conditions. Also see [15–17] et al. for more
informations.

Motivated by the work above, the main purpose of this paper is to establish a similar
theory for the multilinear commutator generated by a Marcinkiewicz integral operator
and a RBMO(µ) function or OscexpLr(µ) function on Rd with a positive Radon measure
which may be non doubling.

To be precise, let µ be a positive Radon measure on Rd which only satisfies the fol-
lowing growth condition that for all x∈Rd and all r>0,

µ(B(x,r))≤C0rn, (1.1)

where C0 > 0 and n are some positive constants, 0 < n ≤ d, and B(x,r) is the open ball
centered at x and having radius r. We recall that µ is said to be a doubling measure, if
there is a positive constant C such that for any x∈suppµ and r>0,

µ(B(x,2r))≤Cµ(B(x,r)),

and that the doubling condition is a key assumption in the classical theory of harmonic
analysis. In recent years, many classical results concerning the theory of Calderón-
Zygmund operators and function spaces have been proved to be still valid if the
Lebesgue measure is substituted by a measure µ as in (1.1); see [18–25]. We mention
that the analysis on non-homogeneous spaces play an essential role in solving the long-
standing open Painlevé’s problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For
a cube Q⊂Rd, we mean a closed cube whose sides parallel to the coordinate axes, and
we denote its side length by l(Q) and its center by xQ. Let γ>1 and β>γn. We say that
a cube Q is an (γ,β)-doubling cube if µ(γQ)≤ βµ(Q), where γQ denotes the cube with
the same center as Q and l(γQ)=γl(Q). For definiteness, if γ and β are not specified, by
a doubling cube we mean a (2,2d+1)-doubling cube. Especially, for any given cube Q, we
denote by Q̃ the smallest doubling cube which contains Q and has the same center as Q.


