Boundedness for Multilinear Commutators of Marcinkiewicz Integral on Morrey-Herz Spaces with Non Doubling Measures

Jianglong Wu1,* and Qingguo Liu2

1 Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, Hei Longjiang, China
2 University of Nova Gorica, Nova Gorica 5000, Slovenia

Received 7 September 2012

Abstract. In this paper, the authors establish the boundedness of multilinear commutators generated by a Marcinkiewicz integral operator and a RBMO(μ) function on homogeneous Morrey-Herz spaces with non doubling measures.

Key Words: Marcinkiewicz integral, commutator, Morrey-Herz space, non doubling measure, RBMO function.

AMS Subject Classifications: 47B47, 42B20, 47A30

1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley g function, Marcinkiewicz [1] introduced the operator

\[M(f)(x) = \left(\int_{0}^{\pi} \left\| F(x+t) + F(x-t) - 2F(x) \right\|^2 t^3 \, dt \right)^{\frac{1}{2}}, \quad x \in [0,2\pi], \]

where \(F(x) = \int_{0}^{x} f(t) \, dt \). This operator is now called the Marcinkiewicz integral. Zygmund [2] proved that the operator \(M \) is bounded on the Lebesgue space \(L^p([0,2\pi]) \) for \(p \in (1,\infty) \). Stein [3] generalized the above Marcinkiewicz integral to the following higher-dimensional case. Let \(\Omega \) be homogeneous of degree zero in \(\mathbb{R}^d \) for \(d \geq 2 \), integrable and have mean value zero on the unit sphere \(S^{d-1} \). The higher-dimensional Marcinkiewicz integral is defined by

\[M_\Omega(f)(x) = \left(\int_{0}^{\infty} \left(\int_{|y| \leq t} \frac{\Omega(x-y)}{|x-y|^{d-1}} f(y) \, dy \right)^2 \frac{dt}{t^3} \right)^{\frac{1}{2}}, \quad x \in \mathbb{R}^d. \]
Stein in [3] proved that if \(\Omega \in \text{Lip}_\delta(S^{d-1}) \) for some \(\delta \in (0,1] \), then \(M_\Omega \) is bounded on \(L^p(\mathbb{R}^d) \) for any \(p \in (1,2] \), and is also bounded from \(L^1(\mathbb{R}^d) \) to \(L^{1,\infty}(\mathbb{R}^d) \). Since then, a lot of papers focus on this operator. For some recent development, we mention that Al-Salman et al. in [4] obtained the \(L^p(\mathbb{R}^d) \)-boundedness for \(p \in (1,\infty) \) of \(M_\Omega \) if \(\Omega \in L(\log L)^{1/2}(S^{d-1}) \); Fan and Sato in [5] proved that \(M_\Omega \) is bounded from the Lebesgue space \(L^1(\mathbb{R}^d) \) to the weak Lebesgue space \(L^{1,\infty}(\mathbb{R}^d) \) if \(\Omega \in L\log L(S^{d-1}) \). There are many other interesting works for this operator, among them we refer to [6, 7] and their references. On the other hand, Torchinsky and Wang in [8] first introduced the commutator generated by the Marcinkiewicz integral \(M_\Omega \) and the classical \(\text{BMO}(\mathbb{R}^d) \) function, and established its \(L^p(\mathbb{R}^d) \)-boundedness for \(p \in (1,\infty) \) when \(\Omega \in \text{Lip}_\delta(S^{d-1}) \) for some \(\delta \in (0,1] \). Such boundedness of this commutator is further discussed in [9, 10] when \(\Omega \) only satisfies certain size conditions. Moreover, its weak type endpoint estimate is obtained in [11, 12] when \(\Omega \in \text{Lip}_\delta(S^{d-1}) \) for some \(\delta \in (0,1] \), and its weight weak type endpoint estimate is obtained in [13, 14] when \(\Omega \) satisfies a kind of Dini conditions. Also see [15–17] et al. for more informations.

Motivated by the work above, the main purpose of this paper is to establish a similar theory for the multilinear commutator generated by a Marcinkiewicz integral operator and a \(\text{RBMO}(\mu) \) function or \(\text{Osc}_{\exp L}(\mu) \) function on \(\mathbb{R}^d \) with a positive Radon measure which may be non doubling.

To be precise, let \(\mu \) be a positive Radon measure on \(\mathbb{R}^d \) which only satisfies the following growth condition that for all \(x \in \mathbb{R}^d \) and all \(r > 0 \),

\[
\mu(B(x,r)) \leq C_0 r^n, \tag{1.1}
\]

where \(C_0 > 0 \) and \(n \) are some positive constants, \(0 < n \leq d \), and \(B(x,r) \) is the open ball centered at \(x \) and having radius \(r \). We recall that \(\mu \) is said to be a doubling measure, if there is a positive constant \(C \) such that for any \(x \in \text{supp} \mu \) and \(r > 0 \),

\[
\mu(B(x,2r)) \leq C \mu(B(x,r)),
\]

and that the doubling condition is a key assumption in the classical theory of harmonic analysis. In recent years, many classical results concerning the theory of Calderón-Zygmund operators and function spaces have been proved to be still valid if the Lebesgue measure is substituted by a measure \(\mu \) as in (1.1); see [18–25]. We mention that the analysis on non-homogeneous spaces play an essential role in solving the long-standing open Painlevé’s problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For a cube \(Q \subset \mathbb{R}^d \), we mean a closed cube whose sides parallel to the coordinate axes, and we denote its side length by \(l(Q) \) and its center by \(x_Q \). Let \(\gamma > 1 \) and \(\beta > \gamma^n \). We say that a cube \(Q \) is an \((\gamma, \beta) \)-doubling cube if \(\mu(\gamma Q) \leq \beta \mu(Q) \), where \(\gamma Q \) denotes the cube with the same center as \(Q \) and \(l(\gamma Q) = \gamma l(Q) \). For definiteness, if \(\gamma \) and \(\beta \) are not specified, by a doubling cube we mean a \((2,2^d+1)\)-doubling cube. Especially, for any given cube \(Q \), we denote by \(\hat{Q} \) the smallest doubling cube which contains \(Q \) and has the same center as \(Q \).