Boundedness for Multilinear Commutators of Marcinkiewicz Integral on Morrey-Herz Spaces with Non Doubling Measures

Jianglong Wu^{1,*} and Qingguo Liu²

 ¹ Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, Hei Longjiang, China
² University of Nove Gorica, Nova Gorica 5000, Slovenia

Received 7 September 2012

Abstract. In this paper, the authors establish the boundedness of multilinear commutators generated by a Marcinkiewicz integral operator and a RBMO(μ) function on homogeneous Morrey-Herz spaces with non doubling measures.

Key Words: Marcinkiewicz integral, commutator, Morrey-Herz space, non doubling measure, RBMO function.

AMS Subject Classifications: 47B47, 42B20, 47A30

1 Introduction and preliminaries

As an analogy of the classical Littlewood-Paley *g* function, Marcinkiewicz [1] introduced the operator

$$\mathcal{M}(f)(x) = \left(\int_0^{\pi} \frac{|F(x+t) + F(x-t) - 2F(x)|^2}{t^3} \mathrm{d}t\right)^{\frac{1}{2}}, \quad x \in [0, 2\pi],$$

where $F(x) = \int_0^x f(t) dt$. This operator is now called the Marcinkiewicz integral. Zygmund [2] proved that the operator \mathcal{M} is bounded on the Lebesgue space $L^p([0,2\pi])$ for $p \in (1,\infty)$. Stein [3] generalized the above Marcinkiewicz integral to the following higherdimensional case. Let Ω be homogeneous of degree zero in \mathbf{R}^d for $d \ge 2$, integrable and have mean value zero on the unit sphere S^{d-1} . The higher-dimensional Marcinkiewicz integral is defined by

$$\mathcal{M}_{\Omega}(f)(x) = \left(\int_{0}^{\infty} \left| \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{d-1}} f(y) dy \right|^{2} \frac{dt}{t^{3}} \right)^{\frac{1}{2}}, \quad x \in \mathbf{R}^{d}.$$

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. Email addresses: jl-wu@163.com (J. L. Wu), liuqingguo1980@gmail.com (Q. G. Liu)

Stein in [3] proved that if $\Omega \in \operatorname{Lip}_{\delta}(S^{d-1})$ for some $\delta \in (0,1]$, then \mathcal{M}_{Ω} is bounded on $L^{p}(\mathbb{R}^{d})$ for any $p \in (1,2]$, and is also bounded from $L^{1}(\mathbb{R}^{d})$ to $L^{1,\infty}(\mathbb{R}^{d})$. Since then, a lot of papers focus on this operator. For some recent development, we mention that Al-Salman et al. in [4] obtained the $L^{p}(\mathbb{R}^{d})$ -boundedness for $p \in (1,\infty)$ of \mathcal{M}_{Ω} if $\Omega \in L(\log L)^{1/2}(S^{d-1})$; Fan and Sato in [5] proved that \mathcal{M}_{Ω} is bounded from the Lebesgue space $L^{1}(\mathbb{R}^{d})$ to the weak Lebesgue space $L^{1,\infty}(\mathbb{R}^{d})$ if $\Omega \in L\log L(S^{d-1})$. There are many other interesting works for this operator, among them we refer to [6,7] and their references. On the other hand, Torchinsky and Wang in [8] first introduced the commutator generated by the Marcinkiewicz integral \mathcal{M}_{Ω} and the classical BMO(\mathbb{R}^{d}) function, and established its $L^{p}(\mathbb{R}^{d})$ -boundedness for $p \in (1,\infty)$ when $\Omega \in \operatorname{Lip}_{\delta}(S^{d-1})$ for some $\delta \in (0,1]$. Such boundedness of this commutator is further discussed in [9, 10] when Ω only satisfies certain size conditions. Moreover, its weak type endpoint estimate is obtained in [11, 12] when $\Omega \in \operatorname{Lip}_{\delta}(S^{d-1})$ for some $\delta \in (0,1]$, and its weight weak type endpoint estimate is obtained in [13, 14] when Ω satisfies a kind of Dini conditions. Also see [15–17] et al. for more informations.

Motivated by the work above, the main purpose of this paper is to establish a similar theory for the multilinear commutator generated by a Marcinkiewicz integral operator and a RBMO(μ) function or Osc_{expL}(μ) function on **R**^{*d*} with a positive Radon measure which may be non doubling.

To be precise, let μ be a positive Radon measure on \mathbf{R}^d which only satisfies the following growth condition that for all $x \in \mathbf{R}^d$ and all r > 0,

$$\mu(B(x,r)) \le C_0 r^n, \tag{1.1}$$

where $C_0 > 0$ and n are some positive constants, $0 < n \le d$, and B(x,r) is the open ball centered at x and having radius r. We recall that μ is said to be a doubling measure, if there is a positive constant C such that for any $x \in \text{supp}\mu$ and r > 0,

$$\mu(B(x,2r)) \leq C\mu(B(x,r)),$$

and that the doubling condition is a key assumption in the classical theory of harmonic analysis. In recent years, many classical results concerning the theory of Calderón-Zygmund operators and function spaces have been proved to be still valid if the Lebesgue measure is substituted by a measure μ as in (1.1); see [18–25]. We mention that the analysis on non-homogeneous spaces play an essential role in solving the longstanding open Painlevé's problem by Tolsa in [21].

To outline the structure of this paper, we first recall some notation and definitions. For a cube $Q \subset \mathbf{R}^d$, we mean a closed cube whose sides parallel to the coordinate axes, and we denote its side length by l(Q) and its center by x_Q . Let $\gamma > 1$ and $\beta > \gamma^n$. We say that a cube Q is an (γ,β) -doubling cube if $\mu(\gamma Q) \leq \beta \mu(Q)$, where γQ denotes the cube with the same center as Q and $l(\gamma Q) = \gamma l(Q)$. For definiteness, if γ and β are not specified, by a doubling cube we mean a $(2,2^{d+1})$ -doubling cube. Especially, for any given cube Q, we denote by \tilde{Q} the smallest doubling cube which contains Q and has the same center as Q.