Order of Magnitude of Multiple Fourier Coefficients

R. G. Vyas^{1,*} and K. N. Darji²

 ¹ Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
² Department of Science and Humanity, Tatva Institute of Technological Studies, Modasa, Sabarkantha, Gujarat, India

Received 26 May 2011

Abstract. The order of magnitude of multiple Fourier coefficients of complex valued functions of generalized bounded variations like $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$ and r - BV, over $[0, 2\pi]^N$, are estimated.

Key Words: Order of magnitude of multiple Fourier coefficients, function of $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$, r-BV and $\text{Lip}(p;\alpha_1, \dots, \alpha_N)$.

AMS Subject Classifications: 42B05, 26B30, 26D15

1 Introduction

Recently, V. Fülöp and F. Móricz [3] studied the order of magnitude of multiple Fourier coefficients of functions in BV ($\overline{\mathbf{T}}^N$), where $\mathbf{T} = [0, 2\pi)$, in the sense of Vitali and Hardy. Here, we have generalized these results by estimating the order of magnitude of multiple Fourier coefficients of complex valued functions in $(\Lambda^1, \dots, \Lambda^N)BV^{(p)}$, r - BV and Lip $(p;\alpha_1, \dots, \alpha_N)$ over $\overline{\mathbf{T}}^N$.

Definition 1.1. For a given $f \in L^p(\overline{\mathbf{T}}^2)$, $1 \le p < \infty$, the *p*-integral modulus of continuity of *f* is defined as

$$\omega^{(p)}(f;\delta_1,\delta_2) = \sup \left\{ \left(\frac{1}{4\pi^2} \iint_{\overline{\mathbf{T}}^2} |\Delta f(x,y;h,k)|^p dx dy \right)^{1/p} : 0 < h \le \delta_1, \, 0 < k \le \delta_2 \right\},\$$

where

$$\Delta f(x,y;h,k) = f(x+h,y+k) - f(x,y+k) - f(x+h,y) + f(x,y).$$

For every $f \in L^p(\overline{\mathbf{T}}^2)$, $\omega^{(p)}(f;\delta_1,\delta_2) \to 0$ as max $\{\delta_1,\delta_2\} \to 0$.

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* drrgvyas@yahoo.com (R. G. Vyas), darjikiranmsu@gmail.com (K. N. Darji)

For $p \ge 1$ and $\alpha_1, \alpha_2 \in (0, 1]$, we say that $f \in \text{Lip}(p; \alpha_1, \alpha_2)$ if

$$\omega^{(p)}(f;\delta_1,\delta_2) = \mathcal{O}(\delta_1^{\alpha_1}\delta_2^{\alpha_2})$$
 as δ_1 and $\delta_2 \to 0$.

For $p = \infty$, we write $\omega(f; \delta_1, \delta_2)$ for $\omega^{(\infty)}(f; \delta_1, \delta_2)$, Definition 1.1 gives the modulus of continuity of *f* and in that case the class $\text{Lip}(p;\alpha_1,\alpha_2)$ reduces to Lipschitz class $\text{Lip}(\alpha_1,\alpha_2)$.

Definition 1.2. Let **L** be the class of all non-decreasing sequences $\Lambda' = \{\lambda'_n\}$ $(n = 1, 2, \cdots)$ of positive numbers such that $\sum_n (\lambda'_n)^{-1}$ diverges. For given $\Lambda = (\Lambda^1, \Lambda^2)$, where $\Lambda^k = \{\lambda_n^k\} \in \mathbf{L}$ for k = 1, 2 and $p \ge 1$. A complex valued measurable function f defined on a rectangle $R := [a,b] \times [c,d]$ is said to be of $p \cdot (\Lambda^1, \Lambda^2)$ -bounded variation (that is, $f \in$ $(\Lambda^1, \Lambda^2) BV^{(p)}(R)$, if

$$V_{\Lambda_{p}}(f,R) = \sup_{P=P_{1} \times P_{2}} \left(\sum_{i=1}^{m} \sum_{j=1}^{l} \frac{|\Delta f(x_{i},y_{j})|^{p}}{\lambda_{i}^{1}\lambda_{j}^{2}} \right)^{1/p} < \infty,$$

where

$$\Delta f(x_i, y_j) = \Delta f(x_i, y_j; \Delta x_i, \Delta y_j), \qquad \Delta x_i = x_{i+1} - x_i, \Delta y_j = y_{j+1} - y_j, \qquad P_1: a = x_0 < x_1 < x_2 < \dots < x_m = b$$

and

$$P_2: c = y_0 < y_1 < y_2 < \cdots < y_l = d.$$

If $f \in (\Lambda^1, \Lambda^2) BV^{(p)}(R)$ is such that the marginal functions $f(a, \cdot) \in \Lambda^2 BV^{(p)}([c,d])$ and $f(\cdot,c) \in \Lambda^1 BV^{(p)}([a,b])$ (refer [6]) for the definition of $\Lambda BV^{(p)}([a,b])$), then f is said to be of p- $(\Lambda^1, \Lambda^2)^*$ -bounded variation over R (that is, $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$).

If $f \in (\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ then f is bounded and each of the marginal function $f(\cdot, t) \in$

 $\Lambda^{1}BV^{(p)}([a,b])$ and $f(s,\cdot) \in \Lambda^{2}BV^{(p)}([c,d])$, where $t \in [c,d]$ and $s \in [a,b]$ are fixed. Note that, for $\Lambda^{1} = \Lambda$ and $\Lambda^{2} = \{1\}$ (that is, $\lambda_{n}^{1} = \lambda_{n}$ and $\lambda_{n}^{2} = 1$, $\forall n$) the class $(\Lambda^{1},\Lambda^{2})BV^{(p)}(R)$ and the class $(\Lambda^{1},\Lambda^{2})^{*}BV^{(p)}(R)$ reduce to the class $\Lambda BV^{(p)}(R)$ and the class $\Lambda^* BV^{(p)}(R)$ respectively; for p = 1, we omit writing p, the class $(\Lambda^1, \Lambda^2) BV^{(p)}(R)$ and the class $(\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ reduce to the class $(\Lambda^1, \Lambda^2) BV(R)$ (Definition 2, [1]) and the class $(\Lambda^1, \Lambda^2)^* BV(R)$ respectively and for p = 1 the class $\Lambda BV^{(p)}(R)$ and the class $\Lambda^* BV^{(p)}(R)$ reduce to the class $\Lambda BV(R)$ and the class $\Lambda^* BV(R)$ respectively (Definition 3, [2]). Moreover, for $\Lambda^1 = \Lambda^2 = \{1\}$ and for p = 1 the class $(\Lambda^1, \Lambda^2) BV^{(p)}(R)$ and the class $(\Lambda^1, \Lambda^2)^* BV^{(p)}(R)$ reduces to the class $BV_V(R)$ (bounded variation in the sense of Vitali) and the class $BV_H(R)$ (bounded variation in the sense of Hardy) respectively.

Observe that the characteristic function of $E = \{(x,y); x \in [0,1] \text{ and } y \in [0,1-x]\}$ is in $\Lambda BV^{(p)}([0,1]^2)$ if

$$\sum_{n} \left(\frac{1}{\lambda_n}\right)^2 < \infty. \tag{1.1}$$