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Abstract. The order of magnitude of multiple Fourier coefficients of complex valued

functions of generalized bounded variations like (Λ1,··· ,ΛN)BV(p) and r−BV, over
[0,2π]N, are estimated.
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1 Introduction

Recently, V. Fülöp and F. Móricz [3] studied the order of magnitude of multiple Fourier

coefficients of functions in BV (T
N

), where T= [0,2π), in the sense of Vitali and Hardy.
Here, we have generalized these results by estimating the order of magnitude of mul-
tiple Fourier coefficients of complex valued functions in (Λ1,··· ,ΛN)BV(p), r−BV and

Lip(p;α1,··· ,αN) over T
N

.

Definition 1.1. For a given f ∈Lp(T
2
), 1≤ p<∞, the p-integral modulus of continuity of

f is defined as

ω(p)( f ;δ1,δ2)=sup

{(

1

4π2

∫ ∫

T
2
|∆ f (x,y;h,k)|pdxdy

)1/p

: 0<h≤δ1, 0< k≤δ2

}

,

where
∆ f (x,y;h,k)= f (x+h,y+k)− f (x,y+k)− f (x+h,y)+ f (x,y).

For every f ∈Lp(T
2
), ω(p)( f ;δ1,δ2)→0 as max{δ1,δ2}→0.
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For p≥1 and α1,α2∈ (0,1], we say that f ∈Lip(p;α1,α2) if

ω(p)( f ;δ1,δ2)=O(δα1
1 δα2

2 ) as δ1and δ2→0.

For p=∞, we write ω( f ;δ1,δ2) for ω(∞)( f ;δ1,δ2), Definition 1.1 gives the modulus of con-
tinuity of f and in that case the class Lip(p;α1,α2) reduces to Lipschitz class Lip(α1,α2).

Definition 1.2. Let L be the class of all non-decreasing sequences Λ
′
={λ

′

n} (n=1,2,···)
of positive numbers such that ∑n(λ

′

n)
−1 diverges. For given

∧

= (Λ1,Λ2), where Λk =
{λk

n} ∈ L for k = 1,2 and p ≥ 1. A complex valued measurable function f defined on
a rectangle R := [a,b]×[c,d] is said to be of p-(Λ1,Λ2)-bounded variation (that is, f ∈
(Λ1,Λ2)BV(p)(R)), if

V∧

p
( f ,R)=

sup

P=P1×P2

( m

∑
i=1

l

∑
j=1

|∆ f (xi ,yj)|
p

λ1
i λ2

j

)1/p
<∞,

where

∆ f (xi,yj)=∆ f (xi,yj;∆xi,∆yj), ∆xi = xi+1−xi,

∆yj =yj+1−yj, P1 : a= x0< x1< x2< ···< xm =b

and

P2 : c=y0 <y1<y2< ···<yl =d.

If f ∈(Λ1,Λ2)BV(p)(R) is such that the marginal functions f (a,·)∈Λ2BV(p)([c,d]) and
f (·,c)∈Λ1BV(p)([a,b]) (refer [6]) for the definition of ΛBV(p)([a,b])), then f is said to be
of p-(Λ1,Λ2)∗-bounded variation over R (that is, f ∈ (Λ1,Λ2)∗BV(p)(R)).

If f ∈ (Λ1,Λ2)∗BV(p)(R) then f is bounded and each of the marginal function f (·,t)∈
Λ1BV(p)([a,b]) and f (s,·)∈Λ2BV(p)([c,d]), where t∈ [c,d] and s∈ [a,b] are fixed.

Note that, for Λ1 = Λ and Λ2 = {1} (that is, λ1
n = λn and λ2

n = 1, ∀n) the class
(Λ1,Λ2)BV(p)(R) and the class (Λ1,Λ2)∗BV(p)(R) reduce to the class ΛBV(p)(R) and the
class Λ∗BV(p)(R) respectively; for p= 1, we omit writing p, the class (Λ1,Λ2)BV(p)(R)
and the class (Λ1,Λ2)∗BV(p)(R) reduce to the class (Λ1,Λ2)BV(R) (Definition 2, [1]) and
the class (Λ1,Λ2)∗BV(R) respectively and for p = 1 the class ΛBV(p)(R) and the class
Λ∗BV(p)(R) reduce to the class ΛBV(R) and the class Λ∗BV(R) respectively (Definition
3, [2]). Moreover, for Λ1=Λ2={1} and for p=1 the class (Λ1,Λ2)BV(p)(R) and the class
(Λ1,Λ2)∗BV(p)(R) reduces to the class BVV(R) (bounded variation in the sense of Vitali)
and the class BVH(R) (bounded variation in the sense of Hardy) respectively.

Observe that the characteristic function of E= {(x,y);x∈ [0,1] and y∈ [0,1−x]} is in
ΛBV(p)([0,1]2) if

∑
n

( 1

λn

)2
<∞. (1.1)


