NON-ORTHOGONAL *P*-WAVELET PACKETS ON THE HALF-LINE

F. A. Shah

(University of Kashmir, India)

Received May 23, 2011; Revised Dec. 26, 2012

Abstract. In this paper, the notion of *p*-wavelet packets on the positive half-line \mathbb{R}^+ is introduced. A new method for constructing non-orthogonal wavelet packets related to Walsh functions is developed by splitting the wavelet subspaces directly instead of using the low-pass and high-pass filters associated with the multiresolution analysis as used in the classical theory of wavelet packets. Further, the method overcomes the difficulty of constructing non-orthogonal wavelet packets of the dilation factor p > 2.

Key words: *p-Multiresolution analysis, p-wavelet packets, Riesz basis, Walsh function, Walsh-Fourier transform* AMS (2010) subject classification: 42C40, 42C10, 42C15

vis (**2010**) subject classification. 42C40, 42C10, 42C1.

1 Introduction

In the early nineties a general scheme for the construction of wavelets was defined. This scheme is based on the notion of multiresolution analysis (MRA) introduced by Mallat^[16]. Immediately specialists started to implement new wavelet systems and in recent years, the concept MRA of \mathbf{R}^n has been extended to many different setups, for example, Dahlke introduced multiresolution analysis and wavelets on locally compact Abelian groups^[5], Lang^[14] constructed compactly supported orthogonal wavelets on the locally compact Cantor dyadic group \mathcal{C} by following the procedure of Daubechies ^[6] via scaling filters and these wavelets turn out to be certain lacunary Walsh series on the real line. On the otherhand, Jiang et al.^[13] pointed out a method for constructing orthogonal wavelets on local field \mathbf{K} with a constant generating sequence and derived necessary and sufficient conditions for a solution of the refinement equation to generate a multiresolution analysis of $L^2(\mathbf{K})$. Subsequently, the tight wavelet frames on local

fields were constructed by Li and Jiang in ^[15]. Farkov^[7] extended the results of Lang^[14] on the wavelet analysis on the Cantor dyadic group C to the locally compact Abelian group G_p which is defined for an integer $p \ge 2$ and coincides with C when p = 2. Concerning the construction of wavelets on a half-line, Farkov ^[8] has given the general construction of all compactly supported orthogonal p-wavelets in $L^2(\mathbf{R}^+)$ and proved necessary and sufficient conditions for scaling filters with p^n many terms $(p, n \ge 2)$ to generate a p-MRA analysis in $L^2(\mathbf{R}^+)$. These studies were continued by Farkov and his colleagues in [9,10], where they have given some new algorithms for constructing the corresponding biorthogonal and nonstationary wavelets related to the Walsh functions on the positive half-line \mathbf{R}^+ . On the otherhand, Shah and Debnath^[21] have constructed dyadic wavelet frames on the positive half-line \mathbf{R}^+ using the Walsh-Fourier transform and have established a necessary condition and a sufficient condition for the system $\{2^{j/2}\psi(2^jx \ominus k) : j \in \mathbf{Z}, k \in \mathbf{Z}^+\}$ to be a frame for $L^2(\mathbf{R}^+)$.

It is well-known that the classical orthonormal wavelet bases have poor frequency localization. For example, if the wavelet ψ is band limited, then the measure of the supp of $(\psi_{j,k})^{\wedge}$ is 2^{j} -times that of supp $\hat{\psi}$. To overcome this disadvantage, Coifman et al.^[4] constructed univariate orthogonal wavelet packets. The fundamental idea of wavelet packet analysis is to construct a library of orthonormal bases for $L^{2}(\mathbf{R})$, which can be searched in real time for the best expansion with respect to a given application.

Let $\varphi(x)$ and $\psi(x)$ be the scaling function and the wavelet function associated with a multiresolution analysis $\{V_j\}_{j \in \mathbb{Z}}$. Let W_j be the corresponding wavelet subspaces:

$$W_j = \overline{\operatorname{span}} \left\{ \psi_{j,k} : k \in \mathbf{Z} \right\}$$

Using the low-pass and high-pass filters associated with the MRA, the space W_j can be split into two orthogonal subspaces, each of them can further be split into two parts. Repeating this process *j* times, W_j is decomposed into 2^j subspaces each generated by integer translates of a single function. If we apply this to each W_j , then the resulting basis of $L^2(\mathbf{R})$ which will consist of integer translates of a countable number of functions, will give a better frequency localization. This basis is called the *wavelet packet basis*. To describe this more formally, we introduce a parameter *n* to denote the frequency. Set $\omega_0 = \varphi$ and define recursively

$$\omega_{2n}(x) = \sum_{k \in \mathbf{Z}} h_k \omega_n(2x-k), \qquad \omega_{2n+1}(x) = \sum_{k \in \mathbf{Z}} g_k \omega_n(2x-k),$$

where $\{h_k\}_{k \in \mathbb{Z}}$ and $\{g_k\}_{k \in \mathbb{Z}}$ are the low-pass filter and high-pass filter corresponding to $\varphi(x)$ and $\psi(x)$, respectively. Chui and Li^[2] generalized the concept of orthogonal wavelet packets to