THE BOUNDEDNESS FOR A CLASS OF ROUGH FRACTIONAL INTEGRAL OPERATORS ON VARIABLE EXPONENT LEBESGUE SPACES

Huiling Wu and Jiacheng Lan*

(Lishui University, China)

Received June 11, 2012

Abstract. In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces, and establish their boundedness from $L^{p_1(\cdot)}(\mathbf{R}^n)$ to $L^{p_2(\cdot)}(\mathbf{R}^n)$.

Key words: fractional integral, rough kernel, variable exponent Lebesgue space

AMS (2010) subject classification:

1 Introduction and Main Results

In 1931, the variable exponent Lebesgue space has been first proposed in [1] by Polish mathematician Orlicz. In the last years the space has attracted more and more attention, see for example [1-5]. The main motivation for studying the space is applications to models of elasticity theory, fluid mechanics and differential equation with non-standard growth, see for example [6-8].

Let S^{n-1} denote the unit sphere in the Euclidean *n*-dimensional space \mathbb{R}^n . Suppose that $\Omega \in L^s(S^{n-1}), s > \frac{n}{n-\alpha}$, is homogeneous of degree zero on \mathbb{R}^n . Then the fractional integral operator $T_{\Omega,\alpha}$ with a rough kernel is defined by

$$T_{\Omega,\alpha}f(x) = \int_{\mathbf{R}^n} \frac{\Omega(x-y)}{|x-y|^{n-\alpha}} f(y) \mathrm{d}y,$$

Supported by the NSF of Zhejiang Province (Y6090681) and the Education Dept.of Zhejiang Province (Y201120509).

Corresponding author: Jiacheng Lan

and in the case $\Omega \equiv 1$, $T_{\Omega,\alpha}$ is the fractional integral operator (or Riesz potential operator)

$$I_{\alpha}f(x) = \int_{\mathbf{R}^n} \frac{|f(y)|}{|x-y|^{n-\alpha}} \mathrm{d}y.$$

The corresponding fractional maximal operator with a rough kernel is defined by

$$M_{\Omega,\alpha}f(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} |\Omega(x-y)|| f(y) | dy.$$

In fact, we can easily see that when $\Omega \equiv 1$, $M_{\Omega,\alpha}$ is just the fractional maximal operator

$$M_{\alpha}f(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} |f(y)| \, \mathrm{d}y,$$

especially in the limiting case $\alpha = 0$, the fractional maximal operator reduces to the Hardy-Littlewood maximal operator.

It is well known that Calderón and Zygmund^[9] have proven the fractional integral operator $T_{\Omega,\alpha}$ with a rough kernel is bounded on L^p . It turns out that such kind of operators are much more closely related to elliptic partial differential of second order with variable coefficients. For $0 < \alpha < n$,Muchenhoupt and Wheeden^[10] proved the boundedness of $T_{\Omega,\alpha}$ with power weights from L^p to L^q . In [11] Ding, Chen and Fan gave the boundedness properties of $T_{\Omega,\alpha}$ on Hardy Spaces. However, the corresponding results for $T_{\Omega,\alpha}$ have not been proven on variable exponent Lebesgue spaces. Similarly,Diening^[2] discovered the Hardy-littlewood maximal operator is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$, and Cruz-Uribe^[3] investigated the boundedness of M_{α} on $L^{p(\cdot)}(\mathbb{R}^n)$, but the boundedness of $M_{\Omega,\alpha}$ has not been studied.

Before stating our main results, let us recall some notations and definitions.

Definition 1. Suppose $p(\cdot) : \mathbb{R}^n \to [1, \infty)$ is a measurable function for some $\lambda > 0$, then the variable exponent Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ is defined by

$$L^{p(\cdot)}(\mathbf{R}^n) = \{ f \text{ is measurable} : \int_{\mathbf{R}^n} (|f(x)|/\lambda)^{p(x)} dx < \infty \},\$$

with the norm

$$\|f\|_{L^{p(\cdot)}(\mathbf{R}^n)} = \inf\{\lambda > 0 : \int_{\mathbf{R}^n} (|f(x)|/\lambda)^{p(x)} \mathrm{d}x \le 1\}$$

We denote

$$p_- = \operatorname{ess\,sup}\{p(x) : x \in \mathbf{R}^n\}, \qquad p_+ = \operatorname{ess\,sup}\{p(x) : x \in \mathbf{R}^n\}.$$

Using this notation we define a class of variable exponent

$$\Phi(R^n) = \{ p(\cdot) : \mathbf{R}^n \to [1, \infty), \ p_- > 1, \ p_+ < \infty \}.$$