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Abstract. The main objective of this work is to decompose orthogonally the reproducing

kernels Hilbert space using any conditionally positive definite kernels into smaller ones by

introducing the theory of power kernels, and to show how to do this decomposition recur-

sively. It may be used to split large interpolation problems into smaller ones with different

kernels which are related to the original kernels. To reach this objective, we will reconstruct

the reproducing kernels Hilbert space for the normalized and the extended kernels and give

the recursive algorithm of this decomposition.
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1 Introduction

The abstract theory of Reproducing Kernels Hilbert Space (RKHS) has been developed over

a number of years outside of different domains in Physics, Mathematics and/or Chemistry such

as the study of conformal mappings[1], integral equations[2] , and partial differential equations[3] .

The RKHS method has been used for a variety of applications, especially in data interpolation

and smoothing[4−7]. The RKHS method provides a rigorous and effective framework for smooth

multivariate interpolation of arbitrarily scattered data and for accurate approximation of gen-

eral multidimensional functions using conditionally/unconditionally positive kernels. Smooth

global multi-dimensional reproducing kernels have been successfully used in other contexts for

multivariate interpolation, e.g., in computer aided geometric design [8,9] and to solve differential

equations by collocation[10] . These reproducing kernels usually are simple and easily to com-

pute in closed forms[10,11]. The reproducing property imparts a rich physically based structure in



112 M. Mouattamid : Recursive Reproducing Kernels Hilbert Spaces

the associated Hilbert space that possesses many important properties (e.g., the uniqueness and

positive definiteness of the reproducing kernel which are important for its practical utility).

The association of a Hilbert space to each conditionally positive definite function go back to

the analysis of Madych[13]. The practical advantage of all of this is that all useful conditionally

positive definite functions, which were constructed without any relation to an Hilbert space, can

be investigated thoroughly within their native space, once the latter is defined and characterized.

RKHS, in the conditionally positive definite case, turns out to be a Hilbert space plus a finite-

dimensional space[12,17,19] .

Section 2 will summarize the recent work in the construction of RKHS (will be called native

space) for the conditionally positive kernels Φ and also introduce the power kernels and its

native space [15]. Section 3 will present the construction of RKHS for the normalized kernel[18] .

Section 4 will introduce an extended kernel ΦP of the normalized kernel that have the same

RKHS. We will show the condition where the interpolation to ΦP does coincide with the one

associated to Φ. Section 5 is the core of this work. The main idea is to decompose large

interpolation problems into smaller ones using the theory of power kernels and its RKHS. The

orthogonal decomposition of the original native Hilbert space, involving the native space of the

power kernel which is proven in our previous work[15]. We will show how to do this orthogonal

decomposition of RKHS recursively. It turns out to be used to split large interpolation problems

into smaller ones with different kernels which is related to the original kernels Φ.

2 Native Space for the Power Kernels

The interpolation, of scattered data (xi, fi) ∈ R for pairwise points of discrete set X =

{x1, · · · ,xN} and real valued data f (x1), · · · , f (xN), uses a symmetric multivariate function Φ :

Rd ×Rd → R for all x,y ∈ Rd and the Q-dimensional space Pd
m of polynomials pk on Rd of

degree m, to construct the interpolant:

s(x) =
N

∑
j=1

α jΦ(x,x j)+
Q

∑
k=1

βk pk(x) where x ∈ Rd
, (2.1)

where αi and βi are real numbers, via the system























N

∑
j=1

α jΦ(x,x j)+
Q

∑
k=1

βk pk(x) = fi,

N

∑
j=1

α j pk(x j) = 0,

(2.2)


