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Abstract. Harmonic mappings from the hexagasket to the circle are described in terms of

boundary values and topological data. Explicit formulas are also given for the energy of the

mapping. We have generalized the results in [10].
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1 Introduction

Whenever there is a theory of harmonic functions on a space X , there should be a theory
of harmonic mappings from X to Y , where the target space Y is any Riemannian manifold(see
[1], [2] for more details). In this paper we take Y to be the circle, and we want to show that
Strichartz’s method in [10] holds for the hexagasket. The hexagasket provides us one kind of
possibility to show the method holds for all n−gasket if we observe the fact that for the general
n−gasket we can find a boundary set is V0 only consisting of 3 vertices(see [9] and Section 4.1
in [11]) if n is not a multiple of 4.

The hexagasket[6],[9],[11] is generated by the i.f.s. consisting of 6 mappings in the plane,
Fi(x) = 1

3(x− pi)+ pi, i = 1,2,3,4,5,6, where p1, · · · , p6 are vertices of a regular hexagon. The
usual boundary set V0 = {p1, p2, p3, p4, p5, p6}. But in this paper we take a smaller boundary
V0 = {p1, p3, p5}, and the hexagasket is also an affine nested fractal(see [7]).
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We approximate the hexagasket K by a sequence of graphs Γ0,Γ1,· · · with vertices V0 ⊆V1 ⊆
V2 · · · , and Vk+1 = ∪6

j=1FjVk. The edge relation for Γm, denoted x ∼m y, for x,y ∈Vm and x �= y,
is defined by the existence of a word w = (w1, · · · ,wm) with length |w|= m such that x,y ∈ FwK,
where Fw = Fw1 ◦ · · · ◦Fwm . The simple energy form on Γm is

Em(u,v) = ∑
x∼my

(u(x)−u(y))(v(x)− v(y)), (1.1)

and the renormalization energy εm is given by

εm(u,v) = (
7
3
)mEm(u,v), (1.2)

where u and v denote continuous functions on K and, by abuse of notation, their restriction to
Vm.

We regard V0 as the boundary of each graph Vm, and also of K. A function h on Vm (for
m ≥ 1) is called graph harmonic if it satisfies

h(x) =
1
n ∑

y∼mx
h(y), for �{y : y ∼m x} = n = 2 or 4, (1.3)

for all non-boundary point x. It is easy to see this is equivalent to the property that h minimizes
the energy Em(u,u) among all functions u with the same boundary values.

The following proposition summaries the basic results(from [3], [4], [5], [6], [8], [11]) concern-
ing the Dirichlet form and harmonic functions on K, and justifies the choice of renormalization
factor r in (1.2):

Proposition 1.1. (i) For any continuous function u on K, the sequence εm(u,u) is monotone
increasing, so

ε(u,u) = lim
m→∞

εm(u,u) (1.4)

is well-defined in [0,∞], and ε(u,u) = 0 if and only if u is a constant.
Denote by dom(ε) the set of continuous functions for which ε(u,u) < ∞. Then dom(ε)

modulo constants is a Hilbert space with the inner product

ε(u,v) = lim
m→∞

εm(u,v). (1.5)

(ii) A function h is called harmonic on K if it minimizes the energy ε(u,u) among functions
with the same boundary values. Then h is harmonic if and only if its restriction to the every Vm

is graph harmonic.
For a harmonic function h, εm(h,h) = ε(h,h) for every m.
The space of harmonic functions is 3-dimensional, with each harmonic function determined

uniquely from its boundary by means of the following harmonic algorithm: if the values of h on
Vm are known, and the values h(x) for x ∈Vm+1 \Vm is desired, find w with length |w|= m, such
that x ∈ FwK, and set

h(x) = Dwρ(x). (1.6)


