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Abstract. The purpose of this paper is to introduce and discuss the concept of topical func-

tions on upward sets. We give characterizations of topical functions in terms of upward

sets.
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1 Introduction

If X is a partially ordered vector space X, then the set X* = {x € X : x > 0} is called the
positive cone of X, and its members are called positive elements of X .

A partially ordered vector space X is called a vector lattice if for every pair of points x,y in X
both sup{x,y} and inf{x,y} exist. As usual, sup{x,y} is denoted by xVy and inf{x,y} by x A y.
That is, sup{x,y} =xVy and inf{x,y} = xAy. In a vector lattice, the positive part, the negative
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part and the absolute value of an element x are defined by
xT=xVv0, x =(-x)VvV0, and |x|=xV(—x),

respectively. Also we have

x=x"—x", |x|=x"+x, and [x"—y"|<|x—y|

A norm ||.|| on a vector lattice X is said to be a lattice norm, whenever |x| < |y| in X implies
|lx[| < [[y|l- A normed vector lattice is a vector lattice equipped with a lattice norm. If a normed
vector lattice X is complete, then X is referred to a Banach lattice.

Recall that an element 1 € X is called a strong unit if for each x € X there exists 0 < A € R

such that x < A1. Using a strong unit 1 we can prove that
lx[| = inf{A > 0: |x| <A1}, VxeX
is a norm lattice on X. We have also
x| < |lx|I1, VxeX.

Well-know examples of the Banach lattice with strong units are the lattice of all bounded func-
tions defined on a set X and the lattice L= (S, X, ) of all essentially bounded functions on a space
S with a o-algebra of measurable sets X and a measure L.

A function f: X — R =[—oo, +oo]is called topical if it is increasing (x <y = f(x) < f(y))
and plus-homogeneous if f(x+ A1) = f(x)+ A for all x € X and all A € R, and they are studied
in [4-5]. The reader may find many applications in applied mathematics (see [3]).

Recall (see [3]) that a subset U of X is said to be upward, if u € U and x € X with u < x,
then x € U.

For any subset U of X, we shall denote by intU, clU, and bdU the interior, the closure and
the boundary of U, respectively. We have

Nx,r):={yeX: |x—y|<r}={yeX: x—r1 <y<x+rl}.

At first we stste the following lemma which is needed in the proof of the main results.

Lemma 1.1, Let f: X — R be a topical function. Then the following statements are
true:

(@) If x € X and f(x) = +oo then f = +-oo.

(b) If x € X and f(x) = —oo then f = —co.



