
Analysis in Theory and Applications
Anal. Theory Appl., Vol. 35, No. 4 (2019), pp. 335-354

DOI: 10.4208/ata.OA-0017

Regularized Interpolation Driven by Total Variation

Haim Brezis1,2,∗

1 Department of Mathematics, Rutgers, The State University, 110 Frelinghuysen Rd.,
Piscataway, NJ 08854-8019, USA
2 Departments of Mathematics and Computer Science, Technion, Israel Institute
of Technology, 32.000 Haifa, Israel

Received 26 May 2019; Accepted (in revised version) 28 October 2019

Abstract. We explore minimization problems of the form

Inf

{∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2 + α

∫ 1

0
|u|2

}
,

where u is a function defined on (0, 1), (ai) are k given points in (0, 1), with k ≥ 2, ( fi)
are k given real numbers, and α ≥ 0 is a parameter taken to be 0 or 1 for simplicity.
The natural functional setting is the Sobolev space W1,1(0, 1). When α = 0 the Inf is
achieved in W1,1(0, 1). However, when α = 1, minimizers need not exist in W1,1(0, 1).
One is led to introduce a relaxed functional defined on the space BV(0, 1), whose mini-
mizers always exist and can be viewed as generalized solutions of the original ill-posed
problem.
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1 Introduction

Given k points, with k ≥ 2,

0 < a1 < a2 < · · · < ak < 1, (1.1)

and k real numbers fi, i = 1, · · · , k, the aim is to find a function u defined on (0, 1) such
that u(ai) approximates fi as best as possible, and keeping at the same time some control
on the regularity of u, measured here in terms of total variation of u. For this purpose
define the functional

F(u) =
∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2, (1.2)
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and then minimize F. (One may also insert a fidelity parameter in front of the first in-
tegral, but we take to be 1 for simplicity). Note that F is well-defined on the Sobolev
space W1,1(0, 1) since W1,1(0, 1) ⊂ C([0, 1]), so that u(ai) makes sense. As is well-known
W1,1(0, 1) is not a good function space from the point of view of minimization tech-
niques in Functional Analysis. Often, variational problems do not admit minimizers in
W1,1(0, 1). To make up for this “defect” one is usually led to enlarge W1,1(0, 1) and re-
place it by BV(0, 1), the space of functions of bounded variation (see e.g., [1, 2, 5]), where
the existence of minimizers is often a matter of routine. The drawback is that the spe-
cific functional F is not properly defined on BV(0, 1) since the term u(ai) has no obvious
meaning when u has a jump at ai.

In Section 2 we establish that (surprisingly!) the problem

Inf
u∈W1,1(0,1)

F(u) (1.3)

always admits minimizers. In fact all minimizers are classified with the help of a finite-
dimensional auxiliary problem. Given

λ = (λ1, · · · , λk) ∈ Rk,

set

Φ(λ) :=
k−1

∑
i=1
|λi+1 − λi|+

k

∑
i=1
|λi − fi|2. (1.4)

By convexity
m := min

λ∈Rk
Φ(λ) (1.5)

is achieved by some unique λ denoted

U = (U1, · · · , Uk),

and which plays an important role throughout the paper. In this section we never in-
voke Functional Analysis and the space BV(0, 1) is noticeably absent. The existence of
minimizers in W1,1(0, 1) is derived from an elementary computation originally due to T.
Sznigir [6,7]. However this “miracle” does not repeat itself: as we are going to see in Sec-
tion 5 even “mild” pertubations of F need not admit minimizers in W1,1(0, 1), and there it
will be essential to “relax” the problem and search for minimizers in BV(0, 1) using tools
of Functional Analysis.

In Section 3 we introduce the relaxed functional Fr of F, which is much better suited
to minimization problems involving the functional F. We start with the standard abstract
formulation, namely Fr is defined for every v ∈ BV(0, 1) by

Fr(v) := Inf lim inf
n→∞

F(vn), (1.6)

where the Inf in (1.6) is taken over all sequences (vn) ⊂ W1,1(0, 1) such that vn → v in
L2(0, 1). The main result, Theorem 3.1, provides an explicit formula for Fr. The major


