Regularized Interpolation Driven by Total Variation

Haim Brezis^{1,2,*}

 ¹ Department of Mathematics, Rutgers, The State University, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
 ² Departments of Mathematics and Computer Science, Technion, Israel Institute of Technology, 32.000 Haifa, Israel

Received 26 May 2019; Accepted (in revised version) 28 October 2019

Abstract. We explore minimization problems of the form

$$\ln \left\{ \int_0^1 |u'| + \sum_{i=1}^k |u(a_i) - f_i|^2 + \alpha \int_0^1 |u|^2 \right\},\,$$

where *u* is a function defined on (0, 1), (a_i) are *k* given points in (0, 1), with $k \ge 2$, (f_i) are *k* given real numbers, and $\alpha \ge 0$ is a parameter taken to be 0 or 1 for simplicity. The natural functional setting is the Sobolev space $W^{1,1}(0, 1)$. When $\alpha = 0$ the Inf is achieved in $W^{1,1}(0, 1)$. However, when $\alpha = 1$, minimizers need not exist in $W^{1,1}(0, 1)$. One is led to introduce a relaxed functional defined on the space BV(0, 1), whose minimizers always exist and can be viewed as generalized solutions of the original ill-posed problem.

Key Words: Interpolation, minimization problems, functions of bounded variation, relaxed functional.

AMS Subject Classifications: 26B30, 49J45, 65D05

1 Introduction

Given *k* points, with $k \ge 2$,

$$0 < a_1 < a_2 < \dots < a_k < 1, \tag{1.1}$$

and *k* real numbers f_i , $i = 1, \dots, k$, the aim is to find a function *u* defined on (0, 1) such that $u(a_i)$ approximates f_i as best as possible, and keeping at the same time some control on the regularity of *u*, measured here in terms of total variation of *u*. For this purpose define the functional

$$F(u) = \int_0^1 |u'| + \sum_{i=1}^k |u(a_i) - f_i|^2, \qquad (1.2)$$

http://www.global-sci.org/ata/

©2019 Global-Science Press

^{*}Corresponding author. *Email address:* brezis@math.rutgers.edu (H. Brezis)

and then minimize *F*. (One may also insert a fidelity parameter in front of the first integral, but we take to be 1 for simplicity). Note that *F* is well-defined on the Sobolev space $W^{1,1}(0,1)$ since $W^{1,1}(0,1) \subset C([0,1])$, so that $u(a_i)$ makes sense. As is well-known $W^{1,1}(0,1)$ is not a good function space from the point of view of minimization techniques in Functional Analysis. Often, variational problems do *not* admit minimizers in $W^{1,1}(0,1)$. To make up for this "defect" one is usually led to enlarge $W^{1,1}(0,1)$ and replace it by BV(0,1), the space of functions of bounded variation (see e.g., [1,2,5]), where the existence of minimizers is often a matter of routine. The drawback is that the specific functional *F* is not properly defined on BV(0,1) since the term $u(a_i)$ has no obvious meaning when *u* has a jump at a_i .

In Section 2 we establish that (surprisingly!) the problem

$$\lim_{u \in W^{1,1}(0,1)} F(u) \tag{1.3}$$

always admits minimizers. In fact all minimizers are classified with the help of a finitedimensional auxiliary problem. Given

$$\lambda = (\lambda_1, \cdots, \lambda_k) \in \mathbb{R}^k$$

set

$$\Phi(\lambda) := \sum_{i=1}^{k-1} |\lambda_{i+1} - \lambda_i| + \sum_{i=1}^k |\lambda_i - f_i|^2.$$
(1.4)

By convexity

$$m := \min_{\lambda \in \mathbb{R}^k} \Phi(\lambda) \tag{1.5}$$

is achieved by some unique λ denoted

 $U=(U_1,\cdots,U_k),$

and which plays an important role throughout the paper. In this section we never invoke Functional Analysis and the space BV(0,1) is noticeably absent. The existence of minimizers in $W^{1,1}(0,1)$ is derived from an *elementary* computation originally due to T. Sznigir [6,7]. However this "miracle" does not repeat itself: as we are going to see in Section 5 even "mild" pertubations of *F* need not admit minimizers in $W^{1,1}(0,1)$, and there it will be essential to "relax" the problem and search for minimizers in BV(0,1) using tools of Functional Analysis.

In Section 3 we introduce the relaxed functional F_r of F, which is much better suited to minimization problems involving the functional F. We start with the standard abstract formulation, namely F_r is defined for every $v \in BV(0, 1)$ by

$$F_r(v) := \inf \liminf_{n \to \infty} F(v_n), \tag{1.6}$$

where the Inf in (1.6) is taken over all sequences $(v_n) \subset W^{1,1}(0,1)$ such that $v_n \to v$ in $L^2(0,1)$. The main result, Theorem 3.1, provides an *explicit* formula for F_r . The major