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Abstract. In the semiclassical regime, solutions to the time-dependent Schrédinger
equation for molecular dynamics are highly oscillatory. The number of grid points
required for resolving the oscillations may become very large even for simple model
problems, making solution on a grid intractable. Asymptotic methods like Gaussian
beams can resolve the oscillations with little effort and yield good approximations
when the atomic nuclei are heavy and the potential is smooth. However, when the po-
tential has variations on a small length-scale, quantum phenomena become important.
Then asymptotic methods are less accurate. The two classes of methods perform well
in different parameter regimes. This opens for hybrid methods, using Gaussian beams
where we can and finite differences where we have to. We propose a new method for
treating the coupling between the finite difference method and Gaussian beams. The
new method reduces the needed amount of overlap regions considerably compared to
previous methods, which improves the efficiency.
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1 Introduction
We consider the dynamics of atomic nuclei, which is decoupled from the electron dy-

namics through the Born—-Oppenheimer approximation [30]. The atoms may be part of a
single molecule, or of the reactants and products of a chemical reaction. Our model is the
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time-dependent Schrodinger equation (TDSE) in semiclassical scaling,

2
ieu; = —%Au+Vu, x€R", >0, (1.1a)

u(x,0)=up(x). (1.1b)

The wave function u = u(x,t) contains all retrievable information about the system. In
particular, the squared modulus |u(x,t)|* is the probability density of the nuclei being
located at the coordinates x at time t. The probability distribution for other properties,
such as momentum and energy, can be extracted by applying operators to the wave func-
tion. The Hamiltonian —(¢2/2)A+V is the operator for the total energy of the molecular
system, and its two terms correspond to the kinetic and potential energies, respectively.
The scaling parameter ¢ is the reciprocal square root of some characteristic mass for the
problem. For heavier particles, and thus smaller ¢, the problem behaves more classically.
The limit e— 0 is called the semiclassical limit. The range of interesting ¢ is between 1 and
1073, corresponding to the masses of an electron and an uranium atom, respectively. In
this paper we focus on semiclassical problems, i.e., problems with heavy particles. Such
problems typically feature wave packets of width O(y/¢) and with wavelength O(¢), i.e.,
localised highly oscillatory solutions.

Solving highly oscillatory problems on a grid is often prohibitively expensive due to
the vast number of grid points required for resolving the oscillations. This difficulty is
not specific to the Schrodinger equation but common to all high frequency wave propa-
gation problems. When resolving the oscillations on a grid becomes unfeasible one has
to resort to something else, commonly asymptotic methods. Such methods have been
studied in the fields of acoustics, seismology and electromagnetics [6,15] as well as in
quantum dynamics [13]. Asymptotic methods have modelling errors which are depen-
dent on some problem parameter. For high frequency wave propagation problems the
modelling error typically decays in the high frequency limit. This is the case for the
method of Gaussian beams [1, 5,27, 28], which we will consider in this work. A Gaus-
sian beam is a complex-valued basis function with Gaussian profile which is propagated
along a classical trajectory. Its phase exhibits oscillations with wave length of order ¢, and
if the potential V is a polynomial of at most second order Gaussian beams solve the TDSE
exactly. By adding higher order terms to the amplitude and phase, higher order Gaussian
beams can be constructed. Error estimates, in terms of the parameter ¢, for more general
potentials and Gaussian beams of arbitrary order were shown in [21]. In parallel to their
development in the applied mathematics community, Gaussian beams were discovered
by chemical physicists [8] motivated by the observation that if the potential is a quadratic
polynomial, a Gaussian wave function will stay Gaussian for all time.

Gaussian beams perform well for short wave lengths, i.e., for small e. The model
assumption is that the features of the potential V have a length scale which is long com-
pared to the width of a beam. In applications this is not always valid, the particle masses
and the potential are problem parameters beyond our control. In this paper we focus on
the situation where the potential is smooth and slowly varying in most of the domain,



