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Abstract. The generating function methods have been applied successfully to gen-
eralized Hamiltonian systems with constant or invertible Poisson-structure matrices.
In this paper, we extend these results and present the generating function methods
preserving the Poisson structures for generalized Hamiltonian systems with general
variable Poisson-structure matrices. In particular, some obtained Poisson schemes are
applied efficiently to some dynamical systems which can be written into generalized
Hamiltonian systems (such as generalized Lotka-Volterra systems, Robbins equations
and so on).
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1 Introduction

We consider the generalized Hamiltonian systems (cf. [3, 5, 9])

y′(t)=B(y)∇H(y), y=(y1,y2,··· ,yn)
T ∈M, (1.1)

where M is a differential manifold in R
n, ∇ is the gradient operator, H ∈ C∞(M) is a

Hamiltonian function, B(y)= (bij(y))
n
i,j=1 is a skew-symmetric Poisson-structure matrix

and satisfies the Jacobi identity
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∂blk(y)
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∂yi
=0, i, j,k,l=1,2,··· ,n.
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The corresponding Poisson bracket (cf. [16, 17]) is defined as

{F,H}(y)=(∇F(y))T B(y)∇H(y), ∀F,H∈C∞(M).

Definition 1.1 (cf. [5], Chapter 12). A map y→ ŷ=g(y) : M→M is called a Poisson map,
if it is a (local) diffeomorphism and preserves the Poisson bracket, i.e.,

{F◦g,H◦g}={F,H}◦g, ∀F,H∈C∞(M).

An n-order square matrix M(y,ŷ) is called a Poisson matrix if

M(y,ŷ)B(y)M(y,ŷ)T =B(ŷ).

A function C(y)∈C∞(M) is called a Casimir function if

{C,F}(y)=0, ∀F∈C∞(M).

It is easy to prove that g(y) is a Poisson map if and only if

gy(y)B(y)(gy(y))
T =B(ŷ).

For a numerical algorithm applied to the systems (1.1), we hope that it can preserve
more structure characterizations of the original systems. If the discrete flow obtained
by an algorithm for the systems (1.1) is a Poisson map, then we say this algorithm is a
Poisson-structure-preserving algorithm, referred to a Poisson scheme. And the Poisson
scheme is also an extension of the symplectic algorithm (cf. [2, 5, 14, 18]).

Generating function methods (cf. [5, 8, 11, 15]) are also important approaches to con-
struct the symplectic scheme for canonical Hamiltonian systems and the Poisson schemes
for generalized Hamiltonian systems. So far, some generating function methods preserv-
ing the Poisson structures for linear generalized Hamiltonian systems (i.e., Lie-Poisson
systems) and the generalized Hamiltonian systems with constant or invertible Poisson-
structure matrices have been presented respectively (cf. [6, 7, 19]). Moreover, in this pa-
per, we extend these results and present the generating function methods for general-
ized Hamiltonian systems with general variable Poisson-structure matrices which can be
singular. In particular, the obtained Poisson schemes are applied efficiently to some dy-
namical systems which can be written into the forms of generalized Hamiltonian systems
(such as generalized Lotka-Volterra systems, Robbins equations and so on).

In Section 2, we extend the Hamilton-Jacobian theorem to the coefficient-varying gen-
eralized Hamiltonian systems (1.1), and get their generating functions. In Section 3, based
on the obtained results, we construct some Poisson schemes for the systems (1.1). In
Section 4, we use these obtained schemes to solve several specific systems and give the
corresponding numerical results.


