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Abstract. Direct numerical simulations of the transition process from steady laminar
to chaotic flow are considered in this study with the relatively new incompressible lat-
tice Boltzmann equation. Numerically, a multiple relaxation time fully incompressible
lattice Boltzmann equation is implemented in a 2D driven cavity. Spatial discretization
is 2nd-order accurate, and the Kolmogorov length scale estimation based on Reynolds
number (Re) dictates grid resolution. Initial simulations show the method to be accu-
rate for steady laminar flows, while higher Re simulations reveal periodic flow behav-
ior consistent with an initial Hopf bifurcation at Re 7,988. Non-repeating flow behavior
is observed in the phase space trajectories above Re 13,063, and is evidence of the tran-
sition to a chaotic flow regime. Finally, flows at Reynolds numbers above the chaotic
transition point are simulated and found with statistical properties in good agreement
with literature.
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1 Introduction

Characteristics of flow transition from steady state to transience and from transience to
self-sustaining chaos and instability is an active area of research. While transition to
chaos (turbulence in 3D) and separation remain unsolved problems in engineering flow
analysis, direct numerical simulation (DNS) work continues to provide insight to the
physics in an effort to develop improved turbulence transition and separation models.
Past application of the lattice Boltzmann method to chaos and turbulence simulation,
such as channel flow by Lammers et al., suffered from the compressibility error [11, 15]
inherent in the standard lattice Boltzmann equation [8, 20]. This work extends the study
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of transitional flow states using an incompressible lattice Boltzmann method (iLBM) and
a Multiple Relaxation Time (MRT) collision operator. Although physical turbulence is a
three dimensional phenomenon, solutions to the flow equations in two dimensions can
exhibit similar randomness.

Bifurcations, chaos, and energy dissipation, among other characteristics, exist, while
vortex stretching is absent. With this in mind, this work provides a numerical solution
benchmark using MRT-iLBM for comparison with past 2D work.

The Lattice Boltzmann Method (LBM) is a relative newcomer in the field of Compu-
tational Fluid Dynamics (CFD), having been first described in 1988 [16]. This class of
analysis methodology can take many forms. For continuum flow analysis, parameters
are chosen such that numerical solutions to the Navier-Stokes equations are recovered
through solving the discrete Boltzmann equation. While the behavior of Navier-Stokes is
replicated by LBM, the underlying solver algorithms for LBM are considerably simpler
than an equivalent Navier-Stokes solver. Reduced computations-per step reduce overall
roundoff error and make the MRT-iLBM a less numerically noisy solution method [10].

Lid-driven cavity flow (LDC) is a canonical flow case useful in evaluating method-
ology [4]. Literature reporting results for steady and transient laminar, transitional, and
chaotic flows using a wide variety of methods is extensive. The complexity of the flow
despite simple boundaries, along with the plethora of results, makes it an excellent veri-
fication tool. Steady state results were obtained by Ghia et al. [6] using a vorticity-stream
function approach up to moderate Reynolds numbers. More recently, fine-grid results
were reported by Marchi et al. [13] using finite volume Navier-Stokes. LBM has been
applied to the LDC flow in the past by Hou et al. [9], who point out the compressibility
error present in their results.

Past studies of 2D driven cavity flow have reported various values for the Reynolds
number at the onset of transient behavior, dependent on the balance of noisiness and dis-
sipation of the numerical method used. Cazemier et al. [5] analyzed this flow using both
DNS and a reduced-order model deduced from Proper Orthogonal Decomposition of a
DNS simulation performed at Re 22,000. Peng et al. [18] reported the Reynolds numbers
of the first Hopf bifurcation and the turbulence transition, but the sixth order numerical
method applied in the domain center was contaminated by larger error terms from the
second order spatial scheme applied at the boundaries. It is possible that numerical noise
from the combination of low-order accurate numerics and typical grid resolution at the
walls - where the highest gradients occur - served as a source of artificial excitation and
contributed error to the determination of transitional Re. Marie et al. [14] show the dis-
persion and diffusion error of LBM to be excellent across all wavenumbers, suggesting it
is well-suited for DNS analysis.

Several authors report steady solutions of the 2D lid driven cavity flow at Reynolds
numbers upwards of 30,000 by omitting time dependency terms in the modeled equa-
tions. Failure of these simulations to allow solution unsteadiness belies the fact that the
existence of steady flow depends upon Reynolds number-dependent stability criteria.
Solution unsteadiness below Re 10,000 has been well established since at least the work


