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Abstract. This paper is devoted to a unified a priori and a posteriori error analysis of
CIP-FEM (continuous interior penalty finite element method) for second-order elliptic
problems. Compared with the classic a priori error analysis in literature, our technique
can easily apply for any type regularity assumption on the exact solution, especially
for the case of lower H1+s weak regularity under consideration, where 0 ≤ s ≤ 1/2.
Because of the penalty term used in the CIP-FEM, Galerkin orthogonality is lost and
Céa Lemma for conforming finite element methods can not be applied immediately
when 0≤s≤1/2. To overcome this difficulty, our main idea is introducing an auxiliary
C1 finite element space in the analysis of the penalty term. The same tool is also utilized
in the explicit a posteriori error analysis of CIP-FEM.
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1 Introduction

Finite element methods (FEMs), first suggested in the structural analysis in the fifth
decade of last century, have become one of the most important numerical methods in
the field of scientific and engineering computing. Penalty methods, initially introduced
by Lions [14], were used to impose the solutions of elliptic boundary value problem-
s (BVPs) to satisfy the Dirichlet boundary condition therein. Nitsche and Babuska first
applied the penalty technique for solving the elliptic boundary value problem by using
the continuous finite element method [5, 15]. After that using penalty technique in the
finite element discretization for BVPs to control the discontinuity of the finite element
function across the interior triangulation edges developed rapidly. For example, Babus-
ka and Zlámal dealt with the plate bending problem by using C0 finite element space
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with interior penalty technique [6], Zienkiewicz also discussed interior penalty FEMs for
the fourth order problems for which the trial functions though continuous, are not con-
tained in C1 [20]. Today penalty methods have become a basic technique in discontinuous
Galerkin (DG) methods [4, 18].

In 1976, Jim Douglas. Jr. and Todd Dupont first proposed CIP-FEM by adding a penal-
ty term which penalized the numerical flux across the interior edges to the classic C0

continuous finite element discretization for linear elliptic and parabolic problems in [12].
Controlling the jump of the normal derivative across the interior edge of adjacent ele-
ments can produce an apparent stiffness intermediate between C0 and C1 finite element
spaces when we use Galerkin methods based on C0 piecewise polynomial spaces. Nu-
merical experiments with that method have clearly demonstrated the value of penalties
for solving certain problems which have proved intractable to more conventional meth-
ods [12]. Recently CIP-FEMs have been successfully applied for the Helmholtz prob-
lem, which has a highly sign-indefinite and rapidly changing solution on the whole do-
main [19].

Concerning the penalty term of the jumps of flux, the classic error analysis of CIP-

FEM for elliptic BVPs requires a priori regularity H
3
2+s, where s> 0 is arbitrary. In this

case, we could obtain the Galerkin orthogonality and apply Céa Lemma to its error anal-
ysis, just playing the trick likewise in the standard finite element error analysis (see,
e.g., [12]). However, when the exact solution does not have so much smooth property, the
above methods do not work. This paper is dealing with this difficulty by introducing an
auxiliary C1 conforming finite element space, which gives proofs for both a priori error
analysis and a posteriori error analysis for CIP-FEM.

The rest of paper is organized as follows. In Section 2 we will give a brief description
of CIP-FEM and give some basic lemmas that are fundamental in the following derivation
of a priori error analysis and a posteriori error analysis. In Section 3 and Section 4, a priori
error estimate and a posteriori error estimate are presented, respectively. Some numerical
experiments will be given to demonstrate our theoretical analysis in the last section.

Throughout the paper, C always denotes a positive constant independent of the mesh
size and it may not be the same in different places. For convenience, the symbol . will
be used where we can replace X ≤ CY by X . Y for some positive constant C that is
independent of mesh size.

2 Preliminaries and notations

Let Ω be a bounded polyhedral domain with boundary Γ= ∂Ω in n dimensional space
R

n. For a multi-index α = (α1,··· ,αn), set |α|= ∑
n
i=1αi. The derivative operator can be

written as

∂α=
∂|α|

∂x1
α1 ···∂xn

αn
.


