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Abstract. To understand lattice Boltzmann model capability for capturing non-
equilibrium effects, the model with first-order expansion of the equilibrium dis-
tribution function is analytically investigated. In particular, the velocity profile
of Couette flows is exactly obtained for the D2Q9 model, which shows retaining
the first order expansion can capture rarefaction effects in the incompressible limit.
Meanwhile, it clearly demonstrates that the D2Q9 model is not able to reflect flow
characteristics in the Knudsen layer.
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1 Introduction

Due to rapid development of micro/nano-technologies and modern material process-
ing techniques such as laser fabrication processing and plasma etching [9, 10, 12], the
research interest in rarefied gas dynamics has shifted to low-speed flows under the
standard ambient temperature and pressure. For non-equilibrium flows, the linear
constitutive relation for stress, which is assumed in the Navier-Stokes equation, is
no longer valid. Therefore, kinetic methods or extended hydrodynamic models have
to be employed, e.g., the direct simulation Monte Carlo (DSMC) method, and Grad
13 moment model. However, the DSMC simulations is computationally expensive,
especially for slow microflows with small Knudsen number. Meanwhile, the direct
solution of the Boltzmann equation is still very complex due to the collisional integral.
The extended hydrodynamic models are only applicable to the near hydrodynamic
regime.
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The lattice Boltzmann (LB) framework can be served as an alternative computa-
tionally efficient method for non-equilibrium gas flows. It was originally developed
for hydrodynamics and is proved to be a viable numerical tool [1, 4, 5, 17, 25]. Com-
pared to the traditional kinetic theory, the LB framework can be efficient since it uti-
lizes a minimal set of velocities in the phase space [5]. Therefore, significant efforts
have been devoted to develop or examine the capability of LB models for finite Knud-
sen number flows, e.g., [1, 2, 6, 11, 13, 21, 22, 24, 26–30]. It was shown that the LB model
with discrete velocity set derived from high-order Gauss Hermite quadratures can
provide a computationally efficient way of solving the Boltzmann model equation.
It can asymptotically recover the Bhatnagar-Gross-Krook (BGK) equation. With the
first order approximation of the equilibrium distribution function, it is equivalent to
discrete velocity model (DVM) approach of solving the linearized BGK (LBGK) equa-
tion [16]. Therefore, the corresponding LB model can capture non-equilibrium effects.

In this work, we will analytically investigate the capability of LB model for non-
equilibrium flows. With the first order expansion, the governing equations for distri-
bution function can be great simplified so that they can be solved directly by using
available mathematical techniques [14, 19, 20]. In particular, the exact velocity profile
of Couette flows will be obtained for the so-called D2Q9 model [18].

2 Lattice Boltzmann model

LB models can be constructed by utilizing the Gauss-Hermite quadratures [7,8,15,23,
24]. The Boltzmann-BGK equation is

∂ f
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+ ξ · ∇ f + g · ∇ξ f = − p
µ

(
f − f eq), (2.1)

where f denotes the distribution function; ξ, the phase velocity; p, the pressure; g, the
body force; and µ, the gas viscosity. To examine rarefaction effects, it is convenient to
use the following non-dimensional variables
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where u is the macroscopic velocity; R, the gas constant; T, the gas temperature; T0,
the reference temperature; r, the spatial position; and L, the characteristic length of the
flow system. The symbol hat, which denotes dimensionless value, will hereinafter be
omitted. The Knudsen number can be defined by using macroscopic properties as
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µ
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. (2.3)


