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Abstract. The present work concerns the numerical approximation of the M1
model for radiative transfer. The main purpose is to introduce an accurate finite
volume method according to the nonlinear system of conservation laws that gov-
erns this model. We propose to derive an HLLC method which preserves the sta-
tionary contact waves. To supplement this essential property, the method is proved
to be robust and to preserve the physical admissible states. Next, a relevant asymp-
totic preserving correction is proposed in order to obtain a method which is able
to deal with all the physical regimes. The relevance of the numerical procedure is
exhibited thanks to numerical simulations of physical interest.
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1 Introduction

The radiative transfer is involved in many applications where its relevant numerical
simulation turns out to be essential. However, in several cases where it is coupled
with other physics such as hypersonic atmospheric reentry, solving the full radiative
transfer equation has a numerical cost beyond the range of the actual computational
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ressources and alternative models must be considered. In recent years, several models
have been introduced and the present work is devoted to one of them; namely the M1
model introduced by Dubroca-Feugeas [12].

The M1 model is known to satisfy several fundamental physical properties (the list
is given below). The purpose of this paper is to derive a numerical method which is
able to preserve all of these physical properties. Let us emphasize that the numerical
experiments of interest involve all the physical regimes and therefore it is essential to
have a numerical scheme that can handle all of them.

The system of equations governing the M1 model comes from the first two mo-
ments of the radiative transfer equation (see Dubroca-Feugeas [12] for further details).
The considered model reads as follows

∂tE +∇ · F = cσ
(
aT4 − E

)
, (1.1)

∂tF + c2∇ · P = −cσ F, (1.2)

∂t(ρ CvT) = −cσ
(
aT4 − E

)
. (1.3)

Here, E denotes the radiative energy and F ∈ R2 the radiative flux vector. The positive
constant a is prescribed by physics, while c and σ respectively denote the speed of the
light and the opacity. It is to note that the opacity, which will be considered to be
constant here for the sake of simplicity, is in general given by non-linear functions of
T, E and F (see [26]). Concerning the radiative pressure P, it is given by

P =
1
2

((
1− χ( f )

)
I +

(
3χ( f )− 1

)F⊗ F
‖F‖2

)
E, (1.4)

with χ( f ) =
3 + 4 f 2

5 + 2
√

4− 3 f 2
, (1.5)

where we have introduced the normalized flux vector f = F/cE, and we have set
f = ‖f‖.

Let us emphasize that the radiative equations (1.1) and (1.2), issued from the first
two moments of the radiative transfer equation, are coupled to the material tempera-
ture T governed by Eq. (1.3). We have set ρ the material specific density and Cv the
specific heat capacity.

For the sake of simplicity in the notations, we note U=(E, F)∈R3 the radiative state
vector in the following admissible space

A =
{
(E, F)T ∈ R3; E ≥ 0, f ≤ 1

}
.

In the following, W=(E, F, T)T denotes the state vector defined in the admissible space

Ω =
{
(E, F, T)T ∈ R4; (E, F) ∈ A, T ≥ 0

}
.

There are two main regimes of interest governed by the parameter σ. The first one as-
sociated with σ = 0 coincides with the free streaming regime given by the hyperbolic


