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Abstract. The paper presents the size-dependant behaviors of the carbon nanotubes
under electrostatic actuation using the modified couple stress theory and homotopy
perturbation method. Due to the less accuracy of the classical elasticity theorems, the
modified couple stress theory is applied in order to capture the size-dependant prop-
erties of the carbon nanotubes. Both of the static and dynamic behaviors under static
DC and step DC voltages are discussed. The effects of various dimensions and bound-
ary conditions on the deflection and pull-in voltages of the carbon nanotubes are to be
investigated in detail via application of the homotopy perturbation method to solve
the nonlinear governing equations semi-analytically.
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1 Introduction

Carbon nanotubes (CNTs) have found extensive potential and actual applications in
high-level technologies ranging from medicine to engineering, since its discovery by
Iijima in 1991 [1–5]. Due to the wide applications can be supposed for the CNTs in
various conditions, many scientists have studied their different mechanical behaviors
such as buckling loads or vibration properties. For example, Koochi et al. presented
a new approach to model the buckling and stable length of multi-walled CNT probes
near graphite sheets [6]. They applied a hybrid nano-scale continuum model based on
Lennard-Jones potential to simulate the intermolecular force-induced deflection of the
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multi-walled CNTs and determined their stable lengths as a function of geometrical and
material characteristics, initial gap and number of graphene layers.

In another research, Fakhrabadi et al. studied the vibrational behaviors of the CNTs
using molecular mechanics and artificial neural network [7]. They applied molecular
mechanics-based finite element method in order to compute the natural frequencies of
the CNTs with various lengths and diameters and used the artificial neural network to
predict the frequencies of the unmodeled CNTs. There can be found many other papers
relating to the nano mechanical behaviors of the CNTs showing their capabilities to be
utilized in various utilizations [8–10].

One of the main applications of the CNTs is in nano electromechanical systems
(NEMS). NEMS are the miniaturized forms of the micro electromechanical systems
(MEMS) composing of nano structures such as nano beams, shells, plates, tubes or other
similar structures sensed or actuated electrically. Electrothermal, piezoelectric and elec-
trostatic are more common actuation mechanisms in MEMS and NEMS [11–13]. But, the
electrostatic actuation technique is more applicable than the others specially for actuation
of the CNTs. Electrothermal actuators can produce high output force by low voltages, but
the temperature generated by thermal actuator would be extremely high which can reach
more than 800◦C. The advantages of this actuator are that it can be fabricated easily; it can
generate large force and deflection by low voltage and needs smaller chip area. But, the
disadvantage is that the generated temperature is so high that it requires passive or ac-
tive cooling system to reduce the temperature for certain applications of high bandwidth.
The requirement to the effective powerful cooling systems in this actuation mechanism
limits its application drastically, especially for the NEMS. Thus, for the system consid-
ered in this paper, it cannot be applied. On the other hand, piezoelectric actuation tech-
nique produces large forces and high power density, but the displacements generated
are so small. In addition, there are some limitations in the piezoelectric actuators such
as creep and hysteresis reducing the accuracy and high-frequency response capability of
the actuators. The mentioned drawbacks do not allow us to apply it for the current case.
Finally, in electrostatic actuation, the motion of electrodes is due to electrostatic repulsion
by image charges mirrored in the ground plane beneath the suspended structure. This
kind of actuator has small actuation energy and high frequency response, but it also has
drawbacks such as high driving voltage and low output force. The advantages of this ac-
tuation approach make it an appropriate technique for the system studied in this paper
and its shortages does not limit it. Because, for the current case, the nano system does
not require larger forces and the actuation voltage can be appropriately provided.

NEMS in general and CNT-based NEMS in particular can possess applications in elec-
tronic circuits as nano switches, nano capacitors, nano resonators, nano transistors and
elements of random access memories. All of the mentioned applications for the NEMS
require high-precision conditions. Some experiments revealed that the classical elasticity
theories may not have enough accuracy in predicting the mechanical behaviors of the mi-
cro and nano structures [14, 15]. Since continuum-mechanics has been widely applied in
studying the mechanical and electromechanical behaviors of the micro and nano struc-
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tures, scientists have made attempts to modify the available theories or develop some
novel theorems to compensate the shortages of the classical elasticity. One of the effec-
tive theorems developed for this purpose is the modified couple stress theory (MCST)
presented by Yang et al. [16].The classical couple stress elasticity theory presented and
developed by Koiter, Toupin, Mindlin and Tiersten is a higher order continuum theory
including four material constants (two classical and two additional) for isotropic elastic
materials [17–20]. However, in the MCST, unlike the classical couple stress theory, the
couple stress tensor is considered symmetric and only one internal material length scale
parameter is involved. This theory has been applied in different researches regarding
micromechanics and nanomechanics until now and the related papers are continuously
published. However, it has not been applied to study the electromechanical behaviors of
the CNTs yet.

Dequesnes et al. were the first research team studied the static pull-in behaviors of the
CNTs under electrostatic actuation and van der Waals (vdW) force [21]. They applied a
one DOF model in their research which was a simplification and might have some devia-
tions from the real systems. In another research, Ke et al. presented two papers regarding
the CNT-based NEMS [22, 23]. The first paper focused on the quality of charge distribu-
tion and the second one was about the stretching effects on doubly clamped CNTs. In ad-
dition, Ouakad and Younis studied the nonlinear dynamic behaviors of the CNTs under
electrostatic actuation and presented the frequency response of the systems vs. different
applied voltages [24].

In this paper, we are going to study the deflection, vibration and pull-in instability
of the CNTs with different geometries and boundary conditions under electrostatic actu-
ation. Because the governing equations, as presented in the following section, are non-
linear and may not be solved analytically by the common techniques, the numerical or
some special analytic methods should be applied to analyze the mentioned phenomena
in the CNTs. Of course, some semi-analytical methods were applied in order to investi-
gate the mechanical and electromechanical properties of the nanostructures. For exam-
ple, Soroush et al. studied the effects of Casimir and vdW forces on the pull-in instability
of the cantilever nano beams using Adomian decomposition method (ADM) [25]. They
applied this technique to obtain an analytical solution based on the distributed parame-
ter model. In addition, Koochi et al. applied ADM to scrutinize the influences of surface
effects including residual surface stress and surface elasticity on the size-dependent in-
stability of the nano beams in the presence of Casimir force [26].

On the other hand, Abadyan et al. applied homotopy perturbation method to investi-
gate the effects of Casimir force on the pull-in instability of the cantilever nano beams [27].
They studied the static pull-in of the nano beams using this method and compared the re-
sults with those in the literature. Although, this approach was applied in other researches
to study the behaviors of the nanostructures [28, 29], it has not been used to investigate
the electromechanical characterization of the CNTs under electrostatic actuation. Thus,
He’s homotopy perturbation method is to be applied in this paper [30]. This technique
has some advantages rather than other common methods such as fast and safe conver-
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gence. Moreover, it doesn’t need to discretize the space and time domains unlike many
other numerical techniques. It has less computational cost and does not require solving
nonlinear discrete systems of differential equations.

2 Problem definition

This section provides the definition of the system under consideration. As shown in
Fig. 1, suppose that a CNT is suspended over some graphene sheets with an initial gap
equaling G0 (state 1 in the figure). The CNT as the positive electrode and graphene sheets
as the negative electrode (ground plate) are applied an electrical potential difference (V).
The charge distributions over the electrodes make an attractive force between positive
and negative charges. This force cooperated with the interatomic force between the elec-
trodes lead to deflect the CNT towards the ground plate (state 2 in Fig. 1). The deflection
value (w=w(x) in Fig. 1) corresponds to the applied voltage up to where that the elastic
force of the CNT cannot tolerate the attractive force resulted from the applied voltage
and interatomic forces. Hence, it drops suddenly on the ground plate. This phenomenon
is called pull-in instability and the corresponding voltage is pull-in voltage.

Figure 1: Schematic view of an electrostatically actuated carbon nanotube.

3 Mathematical formulation

Based on the MCST developed by Yang et al. the strain energy depends on the strain and
curvature. The former corresponds to the classic stress and the latter relates to the couple
stress. Hence, the strain energy U of an isotropic linear elastic material with volume Ω

under an infinitesimal deformation can be formulated as Eq. (3.1)

U=
1

2

∫∫∫

Ω(σ : ε+m : χ)dv, (3.1)
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where σ, ε, m and χ denote respectively the stress, strain, deviatoric part of couple stress
and symmetric curvature tensors defined by Eqs. (3.2a)-(3.2d) [31]

σ=λtr(ε)I+2µε, (3.2a)

ε=
1

2

[

(∇u)+(∇u)T
]

, (3.2b)

m=2l2µχ, (3.2c)

χ=
1

2

[

(∇θ)+(∇θ)T
]

, (3.2d)

where λ and µ are Lame’s constants and l, u and θ denote respectively the material length
scale parameter, displacement vector and rotation vector. The latter is defined by Eq. (3.3)

θ=
1

2
curl(u). (3.3)

It is worth noting that both σ and m are symmetric, i.e., σ =σT and m=mT, due to the
symmetry of ε and χ in Eqs. (3.2b) and (3.2d). The material length scale parameter l is
mathematically the square of the ratio of the modulus of curvature to the modulus of
shear and is physically a property measuring the effect of couple stress [31].

Suppose that the x, y and z axes are as shown in Fig. 1. Then, the displacement field
can be formulated as below:

u=u0−z
∂w(x)

∂x
, v=0, w=w(x), (3.4)

where u, v and w are respectively the displacements in x, y and z directions and u0 is the
midline stretching. By assuming small slopes in the EulerBernoulli beam as a model of
the CNT after deformation but possible finite deflection w, the only non-zero component
of the strain tensor considering the von-Karman nonlinearity for mid-plane stretching
can be approximately expressed as:

εx =
∂u

∂x
+

1

2

(∂w

∂x

)2
=

∂u0

∂x
−z

∂2w(x)

∂x2
+

1

2

(∂w

∂x

)2
. (3.5)

For a slender beam with a large aspect ratio, the Poisson effect is secondary and can be
disregarded to ease the formulation of the beam theory. Hence, the stress component in
x direction is presented in Eq. (3.6) and the other components are considered zero

σx =Eεx =E
[∂u0

∂x
−z

∂2w(x)

∂x2
+

1

2

(∂w

∂x

)2]

, (3.6)

where E is the modulus of elasticity. Replacing Eq. (3.5) into Eqs. (3.2c)-(3.3) yield the
non-zero components of θ, χ and m as following:

θy =−∂w

∂x
, χxy=χyx=−1

2

∂2w

∂x2
, mxy=myx =−µl2 ∂2w

∂x2
, (3.7)
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where µ is the shear modulus and the other components are zero. On the other hand, for
the current case, the work done by the electrostatic force is expressed as:

W=
∫ L

0
q(x)w(x)dx, (3.8)

where L is the length of the CNT. Substituting Eqs. (3.5)-(3.7) in Eq. (3.1) and applying
the principle of minimum total potential energy, one can obtain the nonlinear partial
differential equation governing the deflection of the doubly clamped CNTs as following:

(EI+µAl2)
∂4w

∂x4
−
(EA

2L

∫ L

0

(∂w

∂x

)2

dx
)∂2w

∂x2
=q(x), (3.9)

where I is the moment of inertia, N is the external applied force and A is the cross-
sectional area of the CNT. The paper presents the static and dynamic pull-in instabilities
of the CNTs. The governing equations and solution methods of each item are presented
respectively.

3.1 Static behavior

The deflection of the doubly clamped CNT applied an electrostatic voltage can be ob-
tained from Eq. (3.9). The deflection can be obtained for the cantilevered CNTs using
this equation with considering zero value for the second term. This can be attributed
to this fact that mid-plane stretching does not appear in the linear behavior supposed
for the CNTs with the cantilever boundary conditions. The maximum deflections of the
cantilever and doubly clamped CNTs are respectively at the tip and longitudinal center.

The distributive force in the right hand of Eq. (3.9) composes of two parts: electrostatic
actuation, qelec, and vdW, qvdW , interactions. The former is formulated in [21] as below

qelec=
πε0V2

√

r(r+2R)ln2[1+ r
R +

√

r(r+2R)
R2

]

, (3.10)

where ε0, V, r and R, respectively denote electrical permittivity, voltage, gap and radius
of the CNT. Using simplifications similar to those considered in [32], the above equation
is written as following:

qelec=
πε0V2

(r+R)ln2[ 2(r+R)
R

]

. (3.11)

According to Fig. 1, r=G0−w, Hence, Eq. (3.11) can be rewritten as the following relation:

qelec=
πε0V2

(G0−w+R)ln2[ 2(G0−w+R)
R

]

. (3.12)
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On the other hand, vdW force of the system was presented in [21] and it can be formu-
lated as below after the mentioned simplifications [6, 32]:

qvdw =4π2c6σ2d2NwR
G0+(NG−1)d

∑
r=G0

1

r5
, (3.13)

where c6 and σ2 are Lennard-Jones potential parameters describing vdW force and d, Nw

and 〈R〉 represent distance between graphene sheets, number of graphene sheets and
mean radius of the CNT.

By rewriting the above equation with respect to the deflection, we have

qvdw =4π2c6σ2d2NwR
NG

∑
n=1

1

(G0+(n−1)d−w)5
. (3.14)

In order to solve the governing equations of the deflections of the CNTs under electro-
static actuation, it is better first to normalize the equations via considering the following
nondimensional parameters:

w̄=
w

G0
, x̄=

x

L
, R̄=

R

G0
, d̄=

d

G0
. (3.15)

Replacing the above parameters in Eq. (3.9), we have

(

1+
α0l2

(d2
o+d2

i )

)d4w̄

dx̄4
−
(

α
∫ 1

0

(dw̄

dx̄

)2

dx̄
)d2w̄

dx̄2

=
βV2

(1−w̄+ R̄)ln2
[

2(1−w̄+R̄)
R̄

]+γ
NG

∑
n=1

1

(1+(n−1)d̄−w̄)
5

, (3.16)

where di and d0 are the inner and outer diameters of the CNT and,

α0=
16µ

E
, (3.17)

α=
AG2

0
2I for doubly clamped boundary conditions.

α=0 for cantilever boundary conditions

β=
πε0L4

EIG2
0

, γ=
4π2c6σ2d̄2NwR̄L4

EIG3
0

,

Eq. (3.17) is correct for the ignorable deflection of the graphene sheets in comparison
to the deflection of the CNT. Thus, the graphene sheets are considered rigid bodies in
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this study. Expansion theory is applied in this stage to solve the governing equations.
Suppose that deflection can be formulated as below:

w̄=
n

∑
i=1

ai ϕi(x̄), (3.18)

where ai are the coefficients and ϕi(x) are the shape modes. The shape modes corre-
sponding to the cantilever and doubly clamped boundary conditions are presented in
Eqs. (3.19a) and (3.19b), respectively,

ϕ(x)=coshµx̄−cosµx̄− (coshµ+cosµ)

(sinhµ+sinµ)
(sinhµx̄−sinµx̄), µ1st=1.875, (3.19a)

ϕ(x)=coshλx̄−cosλx̄− (coshλ−cosλ)

(sinhλ−sinλ)
(sinhλx̄−sinλx̄), λ1st=4.73. (3.19b)

For static deflection of the CNT, the first mode is enough. By substituting the first term
of Eq. (3.18) in Eq. (3.16), we have

a
(

1+
α0l2

(d2
o+d2

i )

)d4 ϕ(x̄)

dx̄4
−αa3 ϕ′′(x̄)

∫ 1

0
ϕ′(x̄)2dx̄

=
βV2

(1−aϕ(x̄)+ R̄)ln2
[

2(1−aϕ(x̄)+R̄)
R̄

]+γ
NG

∑
n=1

1

(1+(n−1)d̄−aϕ(x̄))
5

. (3.20)

Galerkin method is applied to Eq. (3.20) to solve it. By multiplying all of the terms with
ϕ(x̃) and integrating over the domain, we can write

k1sa+k2sa3−
∫ 1

0

βV2 ϕ(x̄)

(1−aϕ(x̄)+ R̄)ln2
[

2(1−aϕ(x̄)+R̄)
R̄

]dx̄

−
∫ 1

0
γ

NG

∑
n=1

ϕ(x̄)

(1+(n−1)d̄−aϕ(x̄))
5

dx̄=0, (3.21)

where

k1s =
(

1+
α0l2

(d2
o+d2

i )

)

∫ 1

0

(d2 ϕ(x̄)

dx̄2

)2
dx̄, k2s =α

(

∫ 1

0
ϕ′(x̄)2dx̄

)2
. (3.22)

Eq. (3.21) is the final governing formulae to analyze the static deflection of the CNT under
electrostatic actuation using the MCST. It should be solved to obtain the deflection of the
various CNTs vs. different applied voltages as well as the pull-in voltage corresponding
to each case.
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3.1.1 Homotopy perturbation method to solve static deflection

The homotopy perturbation method was applied before to analyze the electromechan-
ical behavior of the CNTs based on classical elasticity theory [33]. In this paper, this
technique is utilized in order to address and scrutinize the mentioned behaviors using
a non-classical classical elasticity theory. Suppose that a nonlinear differential equation
with given boundary conditions as Eq. (3.17) is to be solved [33, 34]

A(u)− f (r)=0, r∈Ω, (3.23a)

B
(

u,
∂u

∂n

)

=0, r∈Γ, (3.23b)

where A, u, f (r), Ω, B, n, Γ denote respectively a general nonlinear operator, an unknown
function, a given function of the variable r, problem domain, a given function for the
boundaries, a given direction and domain boundaries. The general nonlinear operator
may be divided into two linear, L(u), and nonlinear, N(u), parts. The main relation of
the homotopy perturbation technique is presented below:

H(a,p)= L(a)−L(ā)+p(N(a)+L(ā))=0, (3.24)

where ā is the initial guess satisfying the boundary conditions and a denotes the solution
of the problem considered as below:

a= a0+pa1+p2a2+p3a3+p4a4+p5a5+··· . (3.25)

Also, p ∈ [0,1] is an embedding parameter. Its value equaling zero corresponds to the
initial guess and equaling one corresponds to the solution of the problem. N(a) can be
expanded in Taylor series as presented below [33, 34]

N(a)=N(a0)+N′(a0)(pa1+p2a2+p3a3+p4a4+p5a5)

+
N′′(a0)

2!
(pa1+p2a2+p3a3+p4a4+p5a5)

2

+
N′′′(a0)

3!
(pa1+p2a2+p3a3+p4a4+p5a5)

3

+
N(4)(a0)

4!
(pa1+p2a2+p3a3+p4a4+p5a5)

4. (3.26)

Replacing Eq. (3.26) in Eq. (3.24), the coefficients of pi, i=1−5 are obtained as presented
below [33]

p0 : L(a0)−L(ā)=0, (3.27a)
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p1 : L(a1)+N(a0)+L(ā)=0, (3.27b)

p2 : L(a2)+a1N′(a0)=0, (3.27c)

p3 : L(a3)+a2N′(a0)+a1(N′′(a0))/2!=0, (3.27d)

p4 : L(a4)+a3N′(a0)+
2a1a2

2!
N′′(a0)+

a3
1

3!
N′′′(a0)=0, (3.27e)

p5 : L(a5)+a4N′(a0)+
2a1a3+a2

2

2!
N′′(a0)+

3a2
1a2

3!
N′′′(a0)+

a4
1

4!
N(4)(a0)=0. (3.27f)

For the current problem, according to Eq. (3.24), the linear and nonlinear parts are se-
lected as below:

L(a)= k1sa, (3.28a)

N(a)= k2s a3−
∫ 1

0

βV2 ϕ(x̄)

(1−aϕ(x̄)+ R̄)ln2
[

2(1−aϕ(x̄)+R̄)
R̄

]dx̄

−
∫ 1

0
γ

NG

∑
n=1

ϕ(x̄)

(1+(n−1)d̄−aϕ(x̄))
5

dx̄. (3.28b)

3.1.2 Dynamic behavior

The size-dependent vibrational characteristics of the doubly clamped CNT applied a DC
electrostatic voltage can be modeled using Eq. (3.9), if the inertia term is added,

(EI+µAl2)
∂4w

∂x4
−
(EA

2L

∫ L

0

(∂w

∂x

)2

dx
)∂2w

∂x2
+m

∂2w

∂t2
=qelec+qvdW , (3.29)

where m and t, are mass of the CNT per length and time, respectively. As mentioned be-
fore, the second term is considered zero for the cantilevered CNTs. The nondimensional
parameters introduced in Eq. (3.15) as well as t̄= t/

√
mL4/EI are applied to nondimen-

sionalize Eq. (3.29). The final relation is presented in Eq. (3.30)

(

1+
α0l2

(d2
o+d2

i )

)∂4w̄

∂x̄4
−
(

α
∫ 1

0

(∂w̄

∂x̄

)2

dx̄
)∂2w̄

∂x̄2
+

∂2w̄

∂t̄2

=
βV2

(1−w̄+ R̄)ln2
[

2(1−w̄+R̄)
R̄

]+γ
NG

∑
n=1

1

(1+(n−1)d̄−w̄)
5

. (3.30)

The Taylor expansion of the right hand terms of Eq. (3.30) are as following:

βV2

(1−w̄+ R̄)ln2
[

2(1−w̄+R̄)
R̄

] =A1+A2w̄+A3w̄2+··· , (3.31a)

γ
NG

∑
n=1

1

(1+(n−1)d̄−w̄)
5
=B1+B2w̄+B3w̄2+··· . (3.31b)
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The coefficients Ai and Bi are presented in Eqs. (3.32) and (3.33)

A1=
βV2

R∗ ln2(a∗R∗)
, (3.32a)

A2=
1

ln2(a∗R∗)

{βV2

R∗2
+

2βV2

R∗2 ln(a∗R∗)

}

, (3.32b)

A3=
1

ln2(a∗R∗)

{βV2

R∗3
+

2βV2

R∗3 ln(a∗R∗)
+

βV2(ln(a∗R∗)+3)

R∗3 ln(a∗R∗)2

}

, (3.32c)

where R∗=1+ R̄ and a∗=2/R̄. And

B1=
NG

∑
n=1

γ

d∗5
, B2=

NG

∑
n=1

5γ

d∗6
, B3=

NG

∑
n=1

15γ

d∗7
, (3.33)

where d∗=1+(n−1)d̄. Other Ai and Bi values are not presented here for brevity but can
be easily obtained from successive differentiation. In addition, suppose that Ci= Ai+Bi.
Substituting Eqs. (3.32), (3.33) and (3.34a) in Eq. (3.30) and using Galerkin method, we
have the final governing equation in Eq. (3.34b)

w̄=
n

∑
i=1

ui(t)ϕi(x), (3.34a)

k1d
d2u(t)

dt2
+k2du(t)+k3du3(t)= k4d+k5du(t)+k6du2(t)+··· , (3.34b)

where

k1d =
∫ 1

0
ηϕ2(x)dx, (3.35a)

k2d =
(

1+
α0l2

(d2
o+d2

i )

)

∫ 1

0

(d2 ϕ(x)

dx2

)2
dx, (3.35b)

k3d =
[

∫ 1

0
α
(dϕ(x)

dx

)
2

dx
]2

, (3.35c)

k4d =C1

∫ 1

0
ϕ(x)dx, (3.35d)

k5d =C2

∫ 1

0
ϕ2(x)dx, (3.35e)

k6d =C3

∫ 1

0
ϕ3(x)dx. (3.35f)

3.1.3 Homotopy perturbation method to solve dynamic deflection

To solve the governing equations of the size-dependent dynamic responses of the CNTs
under applied step DC voltage, the homotopy perturbation technique is used. The non-
linear differential equation to be solved is presented in Eq. (3.36)

R(u(t))=0, (3.36)
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where R is the nonlinear operator and u(t) is an unknown function [33,35]. Using q∈[0,1]
as an embedding parameter, the homotopy function can be written as Eq. (3.37):

H(Φ,q)=(1−q)L[Φ(t,q)−u0(t)]−qR[Φ(t,q),Ω(q)]=0, (3.37)

where u0(t) and L are respectively the initial guess satisfying the boundary conditions
and non-zero auxiliary operator. As q increases from zero to one, Φ(t,q) changes from
the initial guess Φ(t,0)=u0(t) to the exact solution Φ(t,1)=u(t). Using Taylor expansion,
Φ(t,q) can be expanded with respect to q as following [33, 35]:

Φ(t,q)=Φ(t,0)+limn→∞

n

∑
j=1

1

j!

∂jΦ(t,q)

∂qj

∣

∣

∣

q=0
qj =u0(t)+limn→∞

n

∑
j=1

uj(t)q
j, (3.38)

where uj(t) is called jth-order deformation derivative. Solving Eq. (3.37), we can write:

(1−q)L[Φ(t,q)−u0(t)]=qR[Φ(t,q),Ω(q)], (3.39a)

Φ(0,q)=0,
dΦ(0,q)

dt
=0. (3.39b)

If q=0, then Eq. (3.39a) turns to the following relation to obtain the zero-order deforma-
tion.

L[Φ(t,0)−u0(t)]=0. (3.40)

Differentiating Eq. (3.39a) with respect to q and setting q=0, the first-order deformation
relation with zero initial conditions can be obtained:

L[u1(t)]=qR[Φ(t,q),Ω(q)]
∣

∣

∣

q=0
. (3.41)

The jth order derivative of Eq. (3.39a) and setting q=0 results in the jth-order deformation
equation [35]:

L[uj(t)−δjuj−1(t)]=
1

(j−1)!

∂j−1R[Φ(t,q),Ω(q)]

∂qj−1

∣

∣

∣

q=0
, (3.42)

where

δj=

{

0, if j≤1,
1, otherwise.

(3.43)

The higher-order approximations of the exact solution can be achieved via solving
Eq. (3.42).

In this stage, the explained method is applied to solve the governing equations of
the CNT vibration and dynamic pull-in under step DC voltage. Using a new time scale
τ=ωt, Eq. (3.34b) can be rewritten as follows:

k1dω2 d2u(τ)

dτ2
+k2du(τ)+k3du3(τ)−k4d−k5du(τ)−k6du2(τ)−···=0. (3.44)
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The nonlinear and linear operators of Eq. (3.37) are defined as below [33]:

R[Φ(τ,q),Ω(q)]= k1dω(q)2 ∂2Φ(τ,q)

∂τ2
+k2dΦ(τ,q)+k3dΦ(τ,q)3

−k4d−k5dΦ(τ,q)−k6dΦ(τ,q)2−··· , (3.45a)

L[Φ(t,q)]=ω2
0

(∂2Φ(t,q)

∂τ2
+Φ(t,q)

)

. (3.45b)

The initial guess to the system deflection is considered u0(τ) = 0. Thus, the first order-
approximation is obtained via solving Eq. (3.41):

u1(t)=
k4d

ω2
0

(1−cos(τ)). (3.46)

The governing equation to the undamped vibration of the CNT should be expressed
based on the following base functions:

cos(mτ)=0, m=1,2,3,··· . (3.47)

Hence, in order to eliminate the secular terms in the jth order approximation, the co-
efficients of cos(τ) in the (j−1)th order deformation equation should be set zero. This
fact results in an algebraic equation and its solution leads to ω(j−2). The second order-
approximation is obtained from solving Eq. (3.42).

u2(τ)=
k1dk4d(1+k1d)(1−cos(τ))

k2d+k5d
, ω0=

√

k1d(k2d+k5d)

k1d
. (3.48)

Successive solution of Eq. (3.42) for higher-order approximations and setting q=1 results
in more exact results according to Eq. (3.49)

u(τ)=
n+2

∑
j=0

uj(t), ω=
n

∑
j=0

ωj. (3.49)

4 Results and discussion

In this section, the results obtained from the developed governing equations and the
formulations of the homotopy perturbation method are presented. The results include
the static and dynamic deflections of the electrostatically actuated CNTs with different
dimensions and boundary conditions in the presence of vdW effects as well as their pull-
in voltages (both static and dynamic). They are computed using the MCST and are to
be compared with the values estimated using the classical elasticity theories. The elastic
modulus of the CNT is considered 1TPa. The constants of Lennard-Jones potential are
assumed c6 = 2.43×10−78Nm7 and σ= 1.14×1029m−3 [21] and the number of graphene
sheets is NG =30. Other assumptions are presented in detail in the relative sub-sections.
The dimensions relating to the studied CNTs are: length (L) equals 50nm, radius (R) is
6.785 and initial gap (G) equals 4nm.
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4.1 Deflection of CNT under static voltage

Fig. 2(a) illustrates the tip deflection of the cantilevered CNT under different applied volt-
ages. The results are presented for three length scale parameters. As shown in this figure,
the tip deflection of the CNT increases with the increment in the voltage up to maximum
value and then it suddenly drops down on the ground plate. This phenomenon is called
static pull-in and the corresponding voltage, as described before, is the static pull-in volt-
age.

The figure shows that there is an initial deflection in the absence of the electrostatic
actuation. This means that the cantilevered CNT shows initial deformation under vdW
force. In addition, the figure reveals that application of the MCST results in higher pull-
in voltages. This can be attributed to the fact that the MCST increases the stiffness of the
CNT. Thus, the stiffer CNTs demand higher voltages to pull-in.

Fig. 2(b) depicts the center-pint deflection and static pull-in instability of the doubly
clamped CNT vs. applied voltage. According to the figure, one may conclude that the
doubly clamped CNT represents similar behavior to the cantilevered CNT with some
special differences. The first difference relates to the initial deflection under only vdW
interactions. As shown in the figure, initial deflection of the doubly clamped CNT is
ignorable. This can be attributed to the stiffer structures of the doubly clamped CNTs
in comparison to the cantilevered ones. In addition, the doubly clamped CNTs tolerate
larger deformation than the cantilevered CNTs before pull-in. This fact has the reason
similar to the previous case. Application of the MCST for the doubly clamped CNT, sim-
ilar to the cantilevered CNT, results in larger pull-in voltages. The comparison between
the pull-in voltages presented in Figs. 2(a) and (b) reveals that the doubly clamped CNTs
have remarkably higher pull-in voltages than the cantilevered CNTs.

The effects of increasing length scale parameter on the static pull-in voltages of the
cantilever and doubly clamped CNTs are respectively shown in Figs. 3(a) and (b). The
figures prove that increasing length scale parameter increases the static pull-in voltages

  

(a) (b)

Figure 2: (a) Tip deflection of the cantilevered CNT, (b) Center-point deflection of the doubly clamped CNT.
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(a) (b)

Figure 3: Effects of increasing length scale parameter on static pull-in voltages of (a) cantilevered, (b) doubly
clamped CNT.

  

(a) (b)

Figure 4: Static pull-in voltages of the CNTs with (a) cantilever, (b) doubly clamped boundary conditions vs.
length.

of the CNTs with both boundary conditions. It seems that the gradient of variations
increases with increasing this parameter. This can be attributed to increasing the stiffness
of the CNT with increasing the length scale parameter.

The effects of increasing length on the static pull-in voltages of the cantilever and dou-
bly clamped CNTs are illustrated in Figs. 4(a) and (b). According to the figures, increas-
ing length decreases the pull-in voltages of the CNTs with both boundary conditions.
The reason is that increasing length weakens the nano structure and reduces its stiffness.
Thus, longer CNTs have smaller pull-in voltages.

Figs. 5(a) and (b) respectively show the effects of radius variation on the static pull-in
voltages of the cantilever and doubly clamped CNTs. The figures reveal that increasing
radius increases the pull-in voltages of the CNT with both boundary conditions. This
can be attributed to the fact that increasing radius strengthens the CNT and increases its
stiffness. Thus, the CNTs with larger diameters have higher pull-in voltages. Moreover,
the figures show that application of the MCST increases the pull-in voltages.

The effects of changes of gap distance between the electrodes on the static pull-in
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(a) (b)

Figure 5: Static pull-in voltages of the CNTs with (a) cantilever, (b) doubly clamped boundary conditions vs.
radius.

 
 

(a) (b)

Figure 6: Static pull-in voltages of the CNTs with (a) cantilever, (b) doubly clamped boundary conditions vs.
gap.

voltages of the cantilever and doubly clamped CNTs are depicted in Figs. 6(a) and (b).
According to the figures, increasing gap increases the pull-in voltages of the CNTs with
the considered boundary conditions. The reason is that both of the vdW and electrostatic
forces are gap-dependant loads. Thus, increasing gap weakens both of them. Hence,
in order to reach the pull-in, higher voltages should be applied. Similar to the previ-
ous cases, Figs. 6(a) and (b) confirm that application of the MCST increases the pull-in
voltages.

4.2 Analysis of CNTs under step DC actuation

The physical and geometrical conditions of the CNTs studied in this subsection are same
as those in 2-1. The vibration of the CNTs with the cantilever and doubly clamped bound-
ary conditions are illustrated in Figs. 7(a) and (b). According to the figure, the increment
in the applied voltage results in the larger vibration amplitudes. This is correct for both
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(a) (b)

Figure 7: Vibration of (a) cantilever, (b) doubly clamped CNTs under step DC voltages.

  

(a) (b)

Figure 8: Effects of various length scale parameters on dynamic pull-in voltages of the CNT with (a) cantilever,
(b) doubly clamped boundary conditions.

boundary conditions. However, the increment of the vibration amplitude does not occur
for any arbitrary DC voltage. When the voltage reaches to a threshold, the CNT does
not follow the previous oscillatory motion and diverges from it. This is the dynamic
pull-in and the corresponding voltage is the dynamic pull-in voltage. The figures reveal
that application of the MCST increases the dynamic pull-in voltages, as well. Similar
to the static pull-in voltages, the dynamic pull-in voltages of the doubly clamped CNTs
are greatly larger than the dynamic pull-in voltages of the cantilevered CNTs with same
dimensions.

Figs. 8(a) and (b) show the effects of changes in the length scale parameters on the
dynamic pull-in voltages of the CNTs with the cantilever and doubly clamped boundary
conditions. According to the figures, increasing length scale parameter increases the dy-
namic pull-in voltages of the CNTs with both boundary conditions, Similar to the static
cases, this increment can be attributed to the stiffer nano structures obtained from appli-
cation of the MCST.
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5 Conclusions

The paper presented the static deflection and vibration of the CNTs under electrostatic ac-
tuation in the presence of vdW interactions using the MCST. The homotopy perturbation
method was applied to investigate the effects of diameter, length and gap distance varia-
tions on the pull-in voltages of the CNTs with two cantilever and doubly clamped bound-
ary conditions. The results proposed that the CNTs with longer lengths and smaller
diameters failed to pull-in easier. On the other hand, pull-in phenomenon remarkably
depended on the gap distance between the CNTs and substrate. Smaller gaps resulted
in lower pull-in voltages. The results revealed that application of the MCST confined to
stiffer CNTs with higher pull-in voltages. Increasing the length scale parameter increased
both of the static and dynamic pull-in voltages.

References

[1] S. IIJIMA, Helical microtubules of graphitic carbon, Nature, 354(6348) (1991), pp. 56–58.
[2] M. SUNG, S.-U. PAEK, S.-H. AHN AND J. H. LEE, A study of carbon-nanotube-based nanoelec-

tromechanical resonators tuned by shear strain, Comput. Mater. Sci., 51(1) (2012), pp. 360–364.
[3] O. LOH, X. WEI, J. SULLIVAN, L. E. OCOLA, R. DIVAN AND H. D. ESPINOSA, Carbon-carbon

contacts for robust nanoelectromechanical switches, Adv. Mater., 24(18) (2012), pp. 2463–2468.
[4] C. L. CHENG AND G. J. ZHAO, Steered molecular dynamics simulation study on dynamic self-

assembly of single-stranded DNA with double-walled carbon nanotube and graphene, Nanoscale,
4(7) (2012), pp. 2301–2305.

[5] S. ADHIKARI AND R. CHOWDHURY, The calibration of carbon nanotube based bionanosensors, J.
Appl. Phys., 107(12) (2010), pp. 124322–124322.

[6] A. KOOCHI, A. S. KAZEMI, A. NOGHREHABADI, A. YEKRANGI AND M. ABADYAN, New ap-
proach to model the buckling and stable length of multi walled carbon nanotube probes near graphite
sheets, Mater. Design, 32(5) (2011), pp. 2949–2955.

[7] M. M. S. FAKHRABADI, M. SAMADZADEH, A. RASTGOO, M. H. YAZDI AND M. M. MASH-
HADI, Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural net-
work, Physica E: Low-Dimensional Systems and Nanostructures, 44(3) (2011), pp. 565–578.

[8] M. M. S. FAKHRABADI, A. AMINI, F. RESHADI, N. KHANI AND A. RASTGOO, Investigation
of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes, Comput.
Mater. Sci., 73 (2013), pp. 93–112.

[9] X. HUANG, H. YUAN, W. LIANG AND S. ZHANG, Mechanical properties and deformation
morphologies of covalently bridged multi-walled carbon nanotubes: multiscale modeling, J. Mech.
Phys. Solids, 58(11) (2010), pp. 1847–1862.

[10] S. C. PRADHAN AND T. MURMU, Small-scale effect on vibration analysis of single-walled carbon
nanotubes embedded in an elastic medium using nonlocal elasticity theory, J. Appl. Phys., 105(12)
(2009), pp. 124306–124306.
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