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Abstract. In this paper, we investigate a mixed finite element method (MFEM) for
the elliptic optimal control problems (OCPs) with a distributive control. The state
variable and adjoint state variable are approximated by the conforming rectangular
Q11+Q01×Q10 elements pair. The discrete B-B condition is satisfied automatically,
which is usually considered to be the key point of the MFEM. The control is then
obtained by the orthogonal projection through the adjoint state. Optimal orders of
convergence are derived for the above mentioned variables. Furthermore, superclose
and superconvergence results are also established under certain reasonable regularity
assumptions. Some numerical results are provided to verity the theoretical analysis.
At last, the proposed method is extended to some other low order conforming and
nonconforming elements.
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1 Introduction

Consider the following constrained OCPs: find (p,y,u)∈H×M×Uad, such that

min
u∈Uad⊂U
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(1.1)
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subject to





−div p= f +u in Ω,
p=∇y in Ω,
y=0 on ∂Ω,

(1.2)

where Ω is a rectangular domain with a boundary ∂Ω in R2. pd∈ (C0(Ω))2, yd ∈C0(Ω)
and f ∈ L2(Ω) are given functions. We denote H = (L2(Ω))2, M = H1

0(Ω), U = L2(Ω).
Throughout this paper, we adapt standard Sobolev spaces and norms defined in [1]. The
set Uad is defined as

Uad ={v∈U : a(x)≤v≤b(x) a.e. in Ω}, (1.3)

where a(x), b(x)∈L∞(Ω), and a(x)<b(x) for a.e. x=(x1,x2)∈Ω.
Partial differential equation (PDE) constrained control problems have been playing a

crucial role in many science and engineering applications (cf. [2, 3]). But the exact solu-
tions do not always exist or are difficult to be found, so some studies have been devoted
to the numerical simulations. For example, [4] firstly proposed the FEM for PDE control
problems and derived some error estimates. Later, [5] obtained the O(h2) order super-
convergence by employing linear triangular elements and a projection of the discrete
adjoint state for the elliptic OCPs. In recent several decades, the so-named optimality
conditions (c.f. [6]) led to some a prior and a posterior error estimates of FEMs for OCPs
governed by different PDEs (see [7-11]).

As we know, in some control problems, the objective functional contains the gradient
of the state variable, so the precision of the numerical gradient is also very important in
numerical approximation of the state equation. In fact, MFEMs approximate both the
scalar variable and its gradient with the same accuracy, and are therefore more suitable
for these problems than conventional FEMs. For MFEM, [12] treated the basic ideas at an
introductory level, and discussed the advantages and disadvantages of the mixed meth-
ods. [13] constructed the famous R-T mixed spaces and obtained optimal error estimates
for second order elliptic equations. Many authors have developed the applications and
other properties of mixed finite element approximations in certain areas, which refer to
[14-18] and the references cited therein. By employing the R-T element pair to approx-
imate the state and adjoint, [19] researched a MFEM for the convex OCPs governed by
elliptic equations, in which the convergence and superconvergence of FEM approxima-
tions were derived. Furthermore, superconvergence of the R-T rectangular and triangu-
lar MFEMs for the quadratic OCPs were investigated in [20] and [21]. [22] derived some
a priori and a posteriori error estimates of R-T H1-Galerkin MFEM for elliptic OCPs. [23]
proposed a stabilized MFEM for elliptic control problems by adding suitable elementwise
least-squares residual terms for the primal state variable and its flux. [24] considered the
MFEMs for Dirichlet boundary OCPs, and obtained optimal and quasi-optimal error esti-
mates for problems on polygonal and smooth domains, respectively. [25] and [26] studied
the nonconforming MFEMs for elliptic and Stokes OCPs, respectively.


