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Abstract. In this paper, we propose an efficient numerical method for the optimal con-
trol problem constrained by elliptic equations. Being approximated by the finite ele-
ment method (FEM), the continuous optimal control problem is discretized into a finite
dimensional optimization problem with separable structures. Furthermore, an alter-
nating direction method of multipliers (ADMM) is applied to solve the discretization
problem. The total convergence analysis which includes the discretization error by
FEM and iterative error by ADMM is established. Finally, numerical simulations are
presented to verify the efficiency of the proposed method.
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1 Introduction

The optimal control problem driven by partial differential equations (PDEs) played im-
portant roles in industrial, medical and economical applications, etc.. Therefore, how to
solve this kind of problems has become one of the hottest topics in the field of the opti-
mal control, optimization and numerical solutions of PDEs. Furthermore, there emerged
fruitful research results on mathematical structures, optimization algorithms and dis-
cretization techniques. The theoretical analysis and numerical methods for the optimal
control problems with PDEs have been developed rapidly.

In this paper, we shall deal with the elliptic optimal control problems and focus on
the construction of efficient numerical methods for this kind of problems. The general
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form of the concerned problem is given by

(P)


min
(u,p)

J(u,p)=
1
2
‖u−ud‖2

L2(Ω)+
γ

2
‖p−p0‖2

L2(B)

subject to e(u,p)=0,
p∈Pad,

(1.1)

where, u and p denote the state variable and the control variable respectively. Ω is a con-
vex bounded polygonal domain in R2 with a connected boundary ∂Ω, B=Ω (or ∂Ω), J is
the objective function, ud and p0 are two given functions and γ>0 is a given regulariza-
tion parameter. The constraint e :U×P→Z is governed by an elliptic equation, which is
continuously Fréchet differentiable. Here, U=H2(Ω) (or H

3
2 (Ω)), P=L2(Ω) (or H1(∂Ω),

or L2(∂Ω)) stand for Sobolev spaces and Z is the corresponding dual space H−1(Ω) (or
(H1)∗(Ω)). The set Pad⊂P is called the control constraint which is a bounded convex set.

Based on the properties and the structures of the PDE-constrained optimization prob-
lems such as (1.1), the researchers have drawn two kinds of approaches for solving these
problems: optimize-then-discretize and discretize-then-optimize [10]. It is easy to verify
that these two strategies are equivalent when the discretised system of the continuous op-
timality conditions coincides with the optimality conditions for the discretised optimiza-
tion problem, but they have differences in terms of system structure, which could provide
opportunity for investigators to design algorithms along different directions. The algo-
rithms based on optimize-then-discretize strategy mainly include the steepest descent
method, Newton’s method, sequential quadratic programming (SQP) method etc.. They
are mainly developed for unconstrained control problems [2,15,23]. While the projection
method, primal dual active set (PDAS) method, semi-smooth Newton (SSN) method etc.
are designed for constrained control problems [10, 19, 21]. Among these methods, the
steepest descent method, projection method and PDAS method have better performance
on global convergence property than Newton-type methods, but they have only con-
vergence rate of order one. On the contrary, although the convergency of Newton-type
methods heavily depends on the selection of the initial value, they have local conver-
gence of order two. The algorithms based on discretize-then-optimize strategy mainly
include the extragradient method, approximate proximal point algorithm (APPA), pro-
jected gradient-based method, dual ascent method and so on [9, 17, 22, 24, 25, 27]. The-
oretically, these methods are all very effective, however they would become applicable
only under some strict conditions. For the extragradient method, it is indispensable to
assume that the objective function is differentiable and the gradient satisfies Lipschitz
condition. In order to ensure the convergence, APPA needs to set some criteria for the
error sequence generated by the iterative solution and the exact solution. Both the pro-
jected gradient-based method and dual ascent method require the objective function to
be strictly convex. How to construct an algorithm which has fast convergence as well
as global convergence property under more general conditions becomes more and more
urgent.


