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Abstract. For numerical computation of three-dimensional (3-D) large-scale magneto-
static problems, iterative solver is preferable since a huge amount of memory is needed
in case of using sparse direct solvers. In this paper, a recently proposed Coulomb-
gauged magnetic vector potential (MVP) formulation for magnetostatic problems is
adopted for finite element discretization using edge elements, where the resultant lin-
ear system is symmetric but ill-conditioned. To solve such linear systems efficiently,
we exploit iterative Krylov subspace solvers by constructing three novel block precon-
ditioners, which are derived from conventional block Jacobi, Gauss-Seidel and con-
straint preconditioners. Spectral properties and practical implementation details of
the proposed preconditioners are also discussed. Then, numerical examples of practi-
cal simulations are presented to illustrate the efficiency and accuracy of the proposed
methods.
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1 Introduction

Three-dimensional (3-D) magnetostatic field computations are widely solved for the lo-
cal magnetic flux densities [6–8,12] or global inductance parameters [9] of devices excited
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by direct currents (DC) and/or permanent magnets (PM). In practical applications, the
solution domain usually contains arbitrarily-shaped objects having piecewise or nonlin-
ear permeability coefficients, so the finite element method (FEM) is a good and versatile
choice and produce accurate numerical solutions. There are mainly three ways to for-
mulate magnetostatic problems for numerical computation, including the field formula-
tions [8–10], magnetic scalar potential (MSP) formulations [11, 15] and magnetic vector
potential (MVP) formulations [7, 12, 14–16]. Among these formulations, the MVP-based
formulations are the most convenient in implementation and thus widely in use. Tedious
pre-processing of the source currents for multiply-connected conductors is not necessary
when using gauged MVP formulations [9]. What is more, the MVP actually has indepen-
dent physical reality instead of generally a useful mathematical artifice [13]. Thus it is
really necessary and important to study gauged MVP formulations, such as the Coulomb
gauged ones [7, 12, 14], to solve the MVP which has a unique solution now.

For spatial discretization of the MVP using FEM, since nodal finite elements impose
both tangential and normal continuity when used to approximate each component of
the MVP ~A, which physically only has tangential continuity across material interfaces,
it can produce large numerical errors at material interfaces of iron and air or reentrant
corners of geometry objects [15]. Alternatively, edge elements have become popular in
computational magnetics [7, 10, 12] because of their built-in property by allowing proper
discontinuity of the normal components of the MVP, which can be also widely found in
eddy-current problems [1, 10] or coupled inductive-capacitive problems [4, 5].

The Coulomb-gauged formulation using penalty technique can produce a linear sys-
tem with a unique solution [14], but this is only useful for nodal elements and not valid
for edge elements since the divergence values of the edge element basis is zero within
each mesh element [16]. In this paper, the MVP formulation proposed in [7] is adopted
to model the physical problem being solved, where edge elements can still be used for
spatial discretization while satisfying the Coulomb gauge. After finite element spatial
discretization, it will result in large-scale sparse systems of linear equations when fine
mesh is involved in computation to ensure sufficient numerical accuracy. Due to the high
demand of memory, direct solvers are usually too expensive to use and impractical. Thus
there is a strong need for efficient and robust solvers of the resultant linear systems.

For large-scale applications, although sparse direct solvers are generally accurate, ro-
bust and predictable in terms of both storage and computational cost, they tend to be
too expensive to use for solving large-scale linear systems especially in terms of mem-
ory (e.g., see [17–19]). Iterative solvers, namely the well-known class of Krylov subspace
methods (KSMs), can be an attractive alternative to sparse direct methods as they only re-
quire the information of matrix-vector products; see e.g., [21–23] and references therein.
Since the resultant system of the proposed formulation is ill-conditioned, so the con-
vergence of the KSM will become very slow [21, 24]. To remedy this dilemma, we also
establish two novel block preconditioners for accelerating KSMs to solve the linear sys-
tem. Moreover, practical implementation of our preconditioned KSMs (PKSMs) will be
discussed in details.


