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Abstract. In this paper, we design a collocation method to solve the fractional
Ginzburg-Landau equation. A Jacobi collocation method is developed and imple-
mented in two steps. First, we space-discretize the equation by the Jacobi-Gauss-
Lobatto collocation (JGLC) method in one- and two-dimensional space. The equation
is then converted to a system of ordinary differential equations (ODEs) with the time
variable based on JGLC. The second step applies the Jacobi-Gauss-Radau collocation
(JGRC) method for the time discretization. Finally, we give a theoretical proof of con-
vergence of this Jacobi collocation method and some numerical results showing the
proposed scheme is an effective and high-precision algorithm.
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1 Introduction

The fractional Ginzburg-Landau equation (FGLE) is known as a generalization of the
classical one and has been presented to depict many kinds of nonlinear phenomena. The
Ginzburg-Landau equation (GLE) has a variety of applications, e.g., in biology and chem-
istry. In many areas of physics, the GLE also has important applications, such as super-
conductivity, superfluidity, nonlinear optics, Bose-Einstein condensation and so on [1].
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At first, Ginzburg and Landau proposed the GLE to depict phase transitions in super-
conductors near their critical temperature. The GLE also models the dynamics of electro-
magnetic behavior of a superconductor in an external magnetic field [2].

In recent years, as the fractional differential equations have many applications in dif-
ferent fields of engineering and science, it attracted more and more scholars. A fractional
Ginzburg-Landau equation is derived by Tarasov et al. [2] from the variational Euler-
Lagrange equation for fractal media. Because fractals generate in a fractal media or a
fractal process in nature, the FGLE has been used to depict many physical phenomena,
for example, the dynamical processes in continuum with fractal dispersion or in media
with a fractal mass dimension [2], the organization of a system near the phase transi-
tion point influenced by a competing nonlocal ordering [4], and a network of diffusively
Hindmarsh-Rose neurons with a long-range synaptic coupling [5].

In this paper, we consider a numerical algorithm for solving the following Ginzburg-
Landau equation with fractional Laplace operator (1< a≤2):

ut+(ν+iη)(−∆)
a
2 u+(k+iζ)|u|2u−γu=0, x∈R, t∈ [0,T], (1.1)

and the initial condition

u(x,0)=u0(x), x∈R, (1.2)

where i2=−1, u(x,t) is the unknown complex function from R×R+ to C, u0(x) is a given
smooth function, and ν>0, k>0, η, ζ, γ are real constants. The fractional Laplace operator
(−∆)

a
2 can be defined with the symbol |ξ|a as follows:

−(−∆)
a
2 u(x,t)=−F−1(|ξ|aũ(ξ,t)), (1.3)

where ũ is the Fourier transform of u andF denotes the Fourier transform operator. Yang
et al. [6, 7] showed that the fractional derivative defined in Eq. (1.3) is equivalent to the
Riesz fractional derivative, i.e.,
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The left Riemann-Liouville fractional derivative of u(x,t) is defined as follows:
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