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Abstract. We propose a robust approximate solver for the hydro-elastoplastic solid
material, a general constitutive law extensively applied in explosion and high speed
impact dynamics, and provide a natural transformation between the fluid and solid in
the case of phase transitions. The hydrostatic components of the solid is described by a
family of general Mie-Grüneisen equation of state (EOS), while the deviatoric compo-
nent includes the elastic phase, linearly hardened plastic phase and fluid phase. The
approximate solver provides the interface stress and normal velocity by an iterative
method. The well-posedness and convergence of our solver are proved with mild as-
sumptions on the equations of state. The proposed solver is applied in computing the
numerical flux at the phase interface for our compressible multi-medium flow simu-
lation on Eulerian girds. Several numerical examples, including Riemann problems,
shock-bubble interactions, implosions and high speed impact applications, are pre-
sented to validate the approximate solver.
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1 Introduction

Significant interest has arisen in the modeling and simulation of dynamic events that in-
volve high-load conditions and large deformations, such as shock-driven motions, high-
speed impacts, implosions, and so on. The numerical analysis of these problems de-
mands the implementation of very specific capabilities that enable the simulation of mul-
tiple mediums and their interactions through accurate descriptions of boundary condi-
tions and high-resolution shock and wave capturing.
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There are two typical frameworks to describe the motion of multi-medium flows [1],
that is, the Lagrangian framework and the Eulerian framework. In the Lagrangian frame-
work, the equations for mass, momentum and energy conservations are solved using a
computational mesh that conforms to the material boundaries and moves with parti-
cles [2, 3], which benefits from its simplicity and natural description of deformation, but
suffers from mesh distortion when dealing with large deformation problems. In Eulerian
framework the mesh is fixed in space, which makes these methods very suitable for flows
with large deformations, such as Udaykumar et al. [4–9], Liu et al. [10–15], Mehmandoust
et al. [16], Sijoy et al. [17], and so on. A typical procedure of multi-medium interaction in
Eulerian grids mainly consists of two steps. The first step is the interface capture, includ-
ing the diffuse interface method (DIM) [18–23], and the sharp interface method (SIM),
such as the volume of fluid (VOF) method [24, 25], level set method [26, 27], moment of
fluid (MOF) method [28–30] and front-tracking method [31, 32]. The second step is the
accurate prediction of the interface states, which can be used to stabilize the numerical
diffusion in diffuse interface methods, and to compute the numerical flux and interface
motion in sharp interface methods. One common approach is to solve a multi-medium
Riemann problem which contains the fundamentally physical and mathematical proper-
ties of the governing equations and plays a key role in designing the numerical flux.

The solution of a multi-medium Riemann problem depends not only on the initial
states at each side of the interface, but also on the forms of constitutive relations. There ex-
ist some difficulties in the cases of real materials due to the high nonlinearity of the equa-
tion of state and non-conservation of the deviatoric evolution. A variety of methods to
solve the corresponding Riemann problems have then been proposed. For example, Ya-
dav [33] analyzed spherical shocks in metals by employing a hydrostatic Mie-Grüneisen
equation of state that does not consider the effects of shear deformation. Shyue [34]
developed a Roe’s approximate Riemann solver for the Mie-Grüneisen EOS with vari-
able Grüneisen coefficient. Arienti et al. [35] applied a Roe-Glaster solver to compute
the equations combining the Euler equations involving chemical reaction with the Mie-
Grüneisen EOS. Lee et al. [36] developed an exact Riemann solver for the Mie-Grüneisen
EOS with constant Grüneisen coefficient, where the integral terms are evaluated using
an iterative Romberg algorithm. Banks [37] and Kamm [38] developed a Riemann solver
for the convex Mie-Grüneisen EOS by solving a nonlinear equation for the density in-
crement involved in the numerical integration of rarefaction curves. Unlike the fluid,
there may exist more than one nonlinear wave in a solid when it undergoes an elasto-
plastic deformation, which will increase the difficulty to obtain the exact solution of the
Riemann problem. Kaboudian et al. [39] analyzed the elastic Riemann problem in the
Lagrangian framework, and established the corresponding Riemann solver according to
the characteristic theory. Xiao et al. [40] raised an iterative procedure to solve the Rie-
mann problem approximately by linearizing the Riemann invariants. Tang et al. [41] put
forward a nearly exact Riemann solver for the perfectly elastoplastic solid based on the
physical observation, where the Murnagham EOS and perfectly plastic model were cho-
sen for the hydrostatic pressure and deviatoric stress respectively. Abouziarov et al. [42]


