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Abstract. Full waveform inversion of time-lapse seismic data can be used as a means
of estimating the reservoir changes due to the production. Since the repeated computa-
tions for the monitor surveys lead to a large computational cost, time-lapse full wave-
form inversion is still considered to be a challenging task. To address this problem,
we present an efficient target-oriented inversion scheme for time-lapse seismic data
using an integral equation formulation with Gaussian beam based Green’s function
approach. The proposed time-lapse approach allows one to perform a local inversion
within a small region of interest (e.g. a reservoir under production) for the monitor sur-
vey. We have verified that the T-matrix approach is indeed naturally target-oriented,
which was mentioned by Jakobsen and Ursin [24] and allows one to reduce the compu-
tational cost of time-lapse inversion by focusing the inversion on the target-area only.
This method is based on a new version of the distorted Born iterative T-matrix inverse
scattering method. The Gaussian beam and T-matrix are used in this approach to per-
form the wavefield computation for the time-lapse inversion in the baseline model
from the survey surface to the target region. We have provided target-oriented inver-
sion results of the synthetic time-lapse waveform data, which shows that the proposed
scheme reduces the computational cost significantly.
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1 Introduction

Full waveform inversion (FWI) is a powerful tool for reconstructing the subsurface struc-
ture and estimating the physical parameters, e.g. P- and S- wave velocities in the sub-
surface [1]. Advances in full waveform inversion make it possible to do the time-lapse
seismic full waveform inversion. Time-lapse seismic is a widely used tool for the dy-
namic reservoir monitoring and assessing the reservoir changes due to production [2–4].
Recent studies have shown the applicability of the full waveform inversion for the time-
lapse seismic problem [5–10].

Essentially, the seismic full waveform inversion can be viewed as a seismic inverse
scattering problem since the scattering theory provides the relations between the model
parameter perturbation and the seismic waveform [1, 11–14]. Seismic scattering method
is an important technique for seismic data processing, in which the scattered wavefield
results from a medium perturbation. The perturbation property of the seismic scattering
theory renders it useful not only for seismic forward modeling but also for seismic inver-
sion [15–17]. Since the 1980s, the direct inversion approach based on the linearized wave
equation using the seismic scattering method has been widely used [18–23].

Jakobsen and Ursin [24] developed the distorted Born iterative T-matrix method
(DBIT) for full waveform inversion based on integral equation methods. The underly-
ing idea of this method is to reduce a nonlinear inverse scattering problem to a sequence
of linear inverse scattering problems. For this method, there are several important fea-
tures: (1) the sensitivity matrix is expressed explicitly in terms of the Green’s functions,
which is helpful to reduce the computational cost [24, 25]; (2) this method can be applied
to the cases with multiple sources; (3) the computational cost and convergence problems
can be addressed by the T-matrix approach by domain decomposition and renormaliza-
tion methods [24, 27–29, 61]. These features make the distorted Born iterative T-matrix
method more applicable to seismic full waveform inversion. Additional works on this
method can be found in Jakobsen and Wu [29, 31] and Wang et al. [32]. Recently, the
integral equation formulations were applied to the time-lapse seismic data and to esti-
mate the uncertainty [33]. However, a major limitation of the time-lapse full waveform
inversion is that the computational cost is expensive.

The main purpose of this paper is to develop a fast waveform inversion scheme for
the time-lapse inversion. We develop a target-oriented inversion method, which is based
on the idea of local inversion. Thus, if we develop a fast repeat-inversion scheme, which
is only for a small region, the computational cost can be significantly reduced. It makes
sense because the effects of the production on the reservoir changes are considered as
small perturbations of the earth model [34]. Several studies on the localized full wave-
form inversion have been proposed to approach this topic. Borisov et al. [35] used the
finite-difference injection method to develop an efficient 3-D time-lapse full waveform
inversion. Willemsen et al. [36] derive a local solver for full waveform inversion of a
small region of interest. Malcolm and Willemsen [37] have developed local solvers for
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localized inversion. Broggini et al. [38] derive the immersive boundary conditions for lo-
cal wavefields computation. Willemsen and Malcolm [39] applied the coupled acoustic-
elastic local solver to phase inversion. Yuan et al. [10] performed a localized waveform
inversion time-lapse survey by combining the wavefield injection and extrapolation. Un-
like the methods above, we develop a target-oriented waveform inversion scheme based
on the distorted Born iterative T-matrix method [24] and Gaussian beam based Green’s
function [40–47].

The integral equation formulation of full waveform inversion provides significant
advantages over other methods for the target-oriented inversion since it allows the sen-
sitivity matrix to be expressed explicitly in terms of the Green’s functions. The distorted
Born iterative T-matrix method was introduced as a general FWI method by Jakobsen
and Ursin [24]; but they suggested that it could be very suitable for time-lapse inversion,
since the T-matrix approach is naturally target-oriented, in the sense that the inversion
can be focused on any target if the rest of the model is assumed known. In this paper,
we have performed a numerical study of time-lapse inversion based on the distorted
Born iterative T-matrix method, to verify that this method reduce computational time for
time-lapse inversion. The use of Gaussian beam based Green’s functions for the static
Reference medium also represent a novel aspect of the present study. The target-oriented
inversion method of this paper has the following advantages: (1) When using integral
equation methods, it is only necessary to discretize the target area if the Green’s func-
tions for the rest of the model is known. This is in contrast to the finite difference method
where it is required to discretize the whole model, unless special grid injection method is
used; (2) The scattering volume V in the T-matrix formulation is flexible and can be equal
to the target area in time-lapse inversion; (3) Another advantage if that compared to finite
difference method, there is no grid dispersion error which exists in numerical differential
equation solvers, and the integral equation method has a smaller accumulated error [48].
For our approach, two critical aspects are (1) to calculate the initial local wavefields of the
target region and (2) its iterative updating for the local inversion. To this end, we employ
two methods, called Gaussian beam based Green’s function approach [40, 45] and the
T-matrix method. These two methods are used to calculate the initial local wavefields
of the target region. For the updating of the wavefields in the local inversion, we use
the T-matrix method. The T-matrix method is from quantum mechanical scattering the-
ory [50–55]. Since its introduction into rock physics, the T-matrix method [29, 56–58] has
been successfully used to solve the seismic scattering forward problem. More recently,
this approach has been extended to seismic inversion [24].

The paper is organized as follows: we first review the seismic scattering forward
problem including the Lippmann-Schwinger equation and the T-matrix approach. Then,
we review the seismic inverse scattering method for waveform inversion. Further, we
present our target-oriented inversion scheme for time-lapse seismic data in Section 4.
The new aspects of the paper is described in Section 4 called Time-lapse inversion. Both
Sections 4.1 and 4.2 are new compared with the work of [24], but the sequential and
double difference strategies are less new than the target-oriented aspects discussed in



4 X. Huang et al. / Commun. Comput. Phys., x (201x), pp. 1-27

Sections 4.2. Finally, we give the inverted results for the full baseline model and the
target-oriented inverted results for the time-lapse data.

2 Seismic direct scattering problem

For the inversion of the time-lapse waveform data, we use the seismic scattering method
to extrapolate the wavefield. In this section, we review the Lippmann-Schwinger equa-
tion, Green’s operators and T-matrix theory.

2.1 The Lippmann-Schwinger equation

The Green’s function for the scalar wave equation in the frequency domain satisfies [59]

(

▽2+
ω2

c2(r)

)

G
(
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)

=−δ
(

r−r′
)

, (2.1)

where c(r) is the seismic wave velocity, r is the position vector, r′ is the source position
vector, and the Dirac delta function δ(r−r′) represents a unit point source at position x’
and G(r,r′,ω) is the Green’s function with an angular frequency ω. We can decompose
the actual medium into a background medium and a perturbed medium as
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1
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− 1

c2
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, (2.2)

where c0(r) is the seismic wave velocity in an arbitrary heterogeneous background
medium and χ(r) is the contrast function. Substituting Eq. (2.2) into Eq. (2.1) yields

(

▽2+
ω2

c2
0(r)

)

G
(

r,r′,ω
)

=−δ
(

r−r′
)

−ω2χ(r)G
(

r,r′,ω
)

. (2.3)

The Lippmann-Schwinger equation can be obtained from Eq. (2.3) as [24, 59]
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where G(0)(r,r′,ω) is the Green’s function for the background medium, D is the scatter-
ing domain where χ(r′′) is non-zero, and the background Green’s function G(0) (r,r′,ω)
satisfies the scalar wave equation

(

▽2+
ω2

c2
0(r)

)
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=−δ
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r−r′
)

. (2.5)

If the background medium is homogeneous, the background Green’s function
G(0) (r,r′,ω) can be calculated by analytic methods. If the background medium is inhomo-
geneous, the background Green’s function can be calculated by ray theory [40] or finite
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difference method [1]. In this work, we employ the Gaussian beam summation method
to calculate the background Green’s function. Following the recent approach [45], the
method implements an estimate of the Green’s function in the inhomogeneous back-
ground medium that requires (1) a dynamic ray tracing for Gaussian beam computation,
(2) the Green’s function calculation by Gaussian beam summation. The reason why we
use the Gaussian beam is that (1) we can start the inversion with a smoothed inhomo-
geneous background model; (2) the boundary reflection can be reduced. The details of
the method are shown in Appendix A. For the use of the operator form in the follow-
ing section, we rewrite the Lippmann-Schwinger equation (2.4) in a form of a product of
continuous matrices

G
(

r,r′,ω
)

=G(0)
(

r,r′,ω
)

+
∫

D
dr1dr2G(0) (r1,r2,ω)V (r1,r2)G

(

r2,r′,ω
)

, (2.6)

where V (r1,r2) =ω2χ(r1)δ(r1−r2), V is a local scattering potential operator, which can
be represented by a diagonal matrix in coordinate representation [29, 31].

2.2 The Green’s operators and T-matrix approach

Here, we rewrite the Lippmann-Schwinger equation (2.6) in operator notation

G=G(0)+G(0)VG. (2.7)

Following the recent works [24, 56–58], we introduce the T-matrix approach into the full
waveform inversion approach. Referring to Jakobsen and Ursin [24], we introduce the
T-matrix approach by

VG=TG(0), (2.8)

where represents the T-matrix. Applying the relation (2.8) to the Lippmann-Schwinger
equation (2.7), we have

G=G(0)+G(0)TG(0). (2.9)

For the Green’s operators above, we haven’t specified any matrix elements in any par-
ticular representation. However, for application to the seismology, we introduce the re-
stricted Green’s operators. Note that the above equation is independent of the source-
receiver configuration. By applying the relation (2.8) to the Lippmann-Schwinger equa-
tion (2.7), we have

GVS =G
(0)
VS+G

(0)
VV TG

(0)
VS , (2.10)

where G
(0)
VS and GVS are the source-dependent Green’s functions in the background and

actual media, respectively. Similarly, we get Green’s functions from the source to the
receiver, volume to volume, the scattering point to the receiver, respectively:

GRS =G
(0)
RS +G

(0)
RS TG

(0)
RV ,

GVV =G
(0)
VV+G

(0)
VV TG

(0)
VV ,

GRV =G
(0)
RV+G

(0)
RV TG

(0)
VV .

(2.11)
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Since in Eq. (2.11) G
(0)
RS is arbitrary, the T-matrix satisfies the Lippmann-Schwinger type

equation [24]

T=V+VG
(0)
VV T. (2.12)

Eq. (2.12) has the exact solution

T=
(

I−VG
(0)
VV

)−1
V. (2.13)

The computation of the T-matrix by matrix inversion can be very costly. The domain
decomposition was proposed by Jakobsen and Wu [29, 31] to accelerate the T-matrix ap-
proach to seismic full-waveform inversion. Also, if the perturbation is small, we can use
an approximated form of the T-matrix [24] to update the background Green’s function
for every iteration.

3 Seismic inverse scattering problem

3.1 The distorted Born iterative T-matrix inversion method

The distorted Born iterative T-matrix inversion method of [24, 81], which is based on
a distorted Born approximation [60, 61] and solves for the scattering potential V, uses
an iterative scheme that for each iteration updates the scattering potential. Because the
T-matrix is used for the Green’s function update, the method has been referred to dis-
torted Born iterative T-matrix inversion method. The relationship between a variation

δV(i) =V−Vi in the scattering potential V around a heterogeneous background model

with scattering potential V(i) and a variation δGRS =GRS−G
(i)
RS in the Green’s function

GRS around the Green’s function G
(i)
RS for the background medium is given by [60, 61]

δG
(i)
RS =G

(i)
RVδV(i)G

(i)
VS, (3.1)

where

G
(i)
RS =G

(0)
RS+GRVT(i)G

(0)
VS, (3.2)

G
(i)
VS =G

(0)
VS+GVVT(i)G

(0)
VS, (3.3)

G
(i)
RV =G

(0)
RV+GRVT(i)G

(0)
VV (3.4)

are matrices of Green’s functions for the background medium responsible for different
parts of the scattering path from the source to the receiver via the volume, and

T(i)=T
(

V(i)
)

(3.5)

is the corresponding T-matrix. In Eqs. (3.2)-(3.4), the reference Green’s functions G
(0)
RS ,

G
(0)
VS, and G

(0)
RV are calculated for a heterogeneous medium with Gaussian beams and the



X. Huang et al. / Commun. Comput. Phys., x (201x), pp. 1-27 7

background Green’s functions G
(i)
RS, G

(i)
VS, and G

(i)
RV (typically calculated numerically for

an inverted model with scattering potential V(i) relative to the reference model with zero
scattering potential) are static and dynamic, respectively. By dynamic, they are updated
after each linearised inversion step.

The observable scattered (data residual) wavefield δd
(i)
R associated with the perturba-

tion V(i) can be written as
δd

(i)
R =δG

(i)
RSs, (3.6)

where s is an Ns-dimensional vector associated with the source functions at Ns different
source positions. By combining Eqs. (3.1) and (3.6), a linear relation between the scattered

(data residual) field δd
(i)
R and the scattering potential variation (or perturbation) V(i) [24]

can be obtained:
δd

(i)
R =G

(i)
RV δV(i)G

(i)
VSs. (3.7)

From Eq. (3.7), one can observe that when the scattered (data residual) field δd
(i)
R is

known, one can determine the perturbation V(i) using a regularised least-squares inver-

sion method. Then, the original V(i) can be replaced with the inverted scattering potential
and more accurate solutions can be obtained with iterations in a direct iterative manner.
It should be noted that the data residual field and background medium Green’s functions
can be updated after each iteration by using the exact relations (3.1)-(3.4).

3.2 Some details for implementation

In this work, we use the distorted Born iterative method to solve the inverse problem
for the baseline and time-lapse inversions. The underlying idea of the distorted Born
iterative inversion method is to reduce a nonlinear inverse scattering problem to a series
of linear inverse scattering problem.

Eq. (3.7) can also be expressed as [24]

δd
(i)
r,s =

N

∑
n=1

J
(i)
rn,sδχn, (3.8)

where the scattered wavefields δd represents the difference between the calculated wave-
fields in the background medium and the wavefields in the actual medium, δχ is the
difference of the contrast potential, and the sensitivity matrix can be written as [24]

J
(i)
rn,s=

[

G
(i)
rn δvnG

(i)
ns

]

fs, (3.9)

where G
(i)
rn and G

(i)
ns are the Green’s functions in a dynamic heterogeneous reference

medium associated with the receivers and the sources at ith iteration, respectively. The
Green’s functions that is updated after each iteration and where we compute the corre-
sponding Green’s functions by solving the Lippmann-Schwinger equations (3.2)-(3.4).
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Here, fs is the source function associated with the angular frequency, and δvn is the
Kronecker-delta.

From Eq. (3.8), one can observe that the nonlinear inverse scattering problem has
been reduced to a series of linear inverse scattering problem. However, solving inverse
problem is an ill-posed problem. In order to obtain a meaningful solution, we can apply
generalized Tikhonov regularization to the inverse scattering problem. Thus, the solution
can be obtained by solving the following optimization problem [62]

E(δχ)=
∥

∥

∥
δd(i)− J(i)δχ

∥

∥

∥

2
+α‖δχ‖2 , (3.10)

where ‖‖ represents the L2 norm, α is the regularization parameter, which can be chosen
by the cooling scheme [24], a modified version of the method described in Lavarello and
Oelze [63] and in Hesford and Chew [64], or L-curve method [65]. The regularization
parameter is very important for the inversion. Through many numerical tests, we choose
to use the cooling scheme as

α(i)=α0a(i−1), (3.11)

where α0 is the initial value, and 0.1 < a < 0.9. However, to obtain a relatively good
result, we should choose different initial values in Eq. (3.11) for the baseline and time-
lapse inversion. The details will follow in Section 4. The iterative form solution for the
inversion is

χi+1=χ(i)+
(

Hi+α(i) I
)−1

V(i), (3.12)

with the gradient

V(i)=ℜ
[

(

J(i)
)†

δd(i)
]

, (3.13)

where δd(i) is the difference between the observed data and the calculated data, † denotes
transpose conjugate, i is the number of iteration, ℜ represents the real part, and

H(i)=ℜ
[

(

J(i)
)†

J(i)

]

(3.14)

is the approximate Hessian matrix. The process of solving the nonlinear inverse scat-
tering problem is essentially similar to the Gauss-Newton optimization methods for FWI
(e.g. the process for inverse Hessian, shown as Eq. (3.12) in this paper and Eq. (13) in [76]).
Similar to the GN Hessian (equation 10 in [76]), the element of the Hessian in our ap-
proach is formed by correlating the two Frechet derivative wavefields at the receivers,
which is a approximate Hessian. Actually, it has been demonstrated that the Distorted
Born iterative method is consistent with the Gauss-Newton methods of optimization (see
Remis and van den Berg [74], Oristaglio and Blok [73], Jakobsen and Ursin [24]. How-
ever, different from [75] and [76], we construct the approximate Hessian matrix explicitly
in terms of Green’s functions based on the integral equations. The main difference be-
tween our scattering approach and the conventional adjoint state method is that we have
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an explicit representation of the sensitivity matrix in terms of Green’s functions, that can
easily be updated after each iteration using the variational T-matrix approach, without
having to perform a full forward simulation. And also instead of using the conjugate gra-
dient method, we solve a linear system (using Gaussian elimination method) involving
our approximate Hessian matrix. Appendix B shows the pseudo code of the algorithm,
which is based on the pseudo code of the DBIT inversion algorithm shown in [81].

The above formulations are used to obtain both the full baseline model and the time-
lapse model. For the baseline inversion, we formulate the Gaussian beam based distorted
Born iterative T-matrix inversion method by using the Gaussian beam based Green’s
function as the background Green’s function. This method incorporates several impor-
tant features: (1) The Gaussian beam has flexibility in calculating the wavefields and the
boundary reflection can be avoided because it is a ray-based method. (2) Due to the use
of the complex traveltime [40–46] in Gaussian beam, this method can deal with the prob-
lem of caustic, which is a limitation of the conventional ray theory. For this inversion, we
use the integral equations as wavefield propagators, which is based on scattering theory.
The Gaussian beam is only used to compute the background Green’s function, but the
scattering theory can address all the wavefields, e.g. multiple scattering. In fact, for rela-
tively simple medium, combining the distorted Born iterative inversion method and the
Gaussian beam can be used for the baseline inversion. However, this paper focus on the
target-oriented time-lapse inversion. To obtain an accurate baseline model, the T-matrix
is used in the baseline inversion.

4 Time-lapse inversion

4.1 Sequential and double difference strategies

After obtaining the baseline model, we can perform the time-lapse inversion using the
time-lapse inversion strategies. In this work, we employ two strategies, called sequential
difference strategy and double difference strategy.

Sequential difference strategy: Fig. 1 shows the schematic diagrams of the sequential
difference method. The sequential difference strategy [6, 7, 33] considers the baseline
model as the initial model. Because the perturbation resulting from the reservoir changes
is localized and only occur in a small region, starting from the baseline model for the
time-lapse inversion is a good candidate and can reduce the computation cost. After
completing the time-lapse inversion, the perturbation can be obtained by a subtraction
between the inverted baseline and monitor model.

Double difference strategy: Fig. 2 shows the schematic diagrams of the double
difference method. The double difference strategy was proposed by Waldhauser and
Ellsworth [66] in the traveltime tomography for improving the earthquake source lo-
cation [7, 67, 68]. It also starts the time-lapse inversion with the baseline model [5, 7].
However, instead of a full-data inversion in the sequential difference strategy, the double
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Figure 1: Schematic diagrams of the sequential difference method.

difference strategy only inverts the time-lapse perturbation model using the time-lapse
data difference as

E(δχ)=
1

2
‖(umonitor−ubaseline)−(dmonitor−dbaseline)‖2 , (4.1)

where umonitor, ubaseline, dmonitor and dbaseline are the calculated monitor data set, calculated
baseline data set, observed monitor data set and observed baseline data set, respectively.
The time-lapse data difference consists of two parts: One is the difference between the
observed monitor and baseline data set, and the other is the difference between the cal-
culated monitor and baseline data set. Moreover, there is an assumption that the shot
and receiver positions are equal in the data sets.
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Figure 2: Schematic diagrams of the double difference method.

4.2 The target-oriented scheme

To reduce the computational cost of the time-lapse inversion, we develop a target-
oriented inversion scheme. The target-oriented concept was proposed to reduce the com-
putational cost of the wave-equation least-squares migration [69,70] and the reverse time
migration [71]. This concept is generalized to the local full waveform inversion [10,35,36].
The scheme of the local inversion is referred to as the target-oriented inversion.

For the target-oriented inversion, there have been several different approaches to per-
form localized inversion. Borisov et al [35] used the finite-difference injection method to
develop a localized full waveform inversion for time-lapse imaging. In this approach,
the wavefields are recorded around the local region, and the initial wavefield of the tar-
get region are injected. In subsequent target-oriented inversion, the local wavefields are
updated. However, the method suffers a limitation that it does not accurately model the
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Source Receiver

T-matrix

Gaussian beam

Target area

Figure 3: Sketch illustrating the main ideas of the target-oriented inversion. Note that in this scheme, the
Gaussian beam and T-matrix are used to propagate the wavefields from the source and receiver and- the
wavefields are propagated from the receiver to scattering region by the reciprocity theorem.

higher order long-range interactions between the scattered wavefield propagating into
the unaltered exterior domain and then re-enter into the local target domain. Yang et
al. [77] developed time-lapse waveform inversion by transforming the original survey
into a new survey at the top of the reservoir. The new data sets are synthesized from the
recorded data with the re-datumed signals and the new virtual survey geometry. Because
of modifying the surface data recordings, they introduce varying degrees of artefacts. Va-
lenciano et al. [70] proposed to explicitly compute an approximation of the Hessian in a
target-oriented fashion. After computing a nondiagonal Hessian matrix, they obtain the
inverse image using an iterative algorithm. However, this method used the Green’s func-
tion by solving the one-way wave equation, which has a limited accuracy for large-angle
propagation.

Our approach uses integral equations to develop the target-oriented inversion. The
method requires only one simulation for the initial Green’s functions on the entire sub-
surface model and the initial Green’s functions are computed efficiently since we employ
Gaussian beams. For the subsequent target-oriented inversion, the multiple scattering
occurring within the target area can be modeled by the T-matrix. The T-matrix approach
is naturally target-oriented since the T-matrix refers to the target-region only and is inde-
pendent of the source-receiver configuration. Our target-oriented inversion is based on
the full waveform inversion using the integral equation formulations. Fig. 3 shows the
sketch illustrating the main ideas of target-oriented inversion. The underlying idea of
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the proposed target-oriented inversion is that we only need to compute the local wave-
fields of the target region. The initial local scattered wavefields of the target region are
computed in the inverted baseline model.

We have developed our time-lapse inversion method adopting the distort Born it-
erative T-matrix method described in Section 2.3 and using the inversion formulations
described in Section 3. Our inversion approach involves a static heterogeneous reference

medium (denoted by G
(0)
RS , G

(0)
VS,and G

(0)
RV) for which we use Gaussian beam based Green’s

functions, and a dynamic heterogeneous reference medium that is updated after each it-

eration and where we compute the corresponding Green’s functions (G
(i)
RS, G

(i)
VS,and G

(i)
RV)

by solving the Lippmann-Schwinger equation. The Green’s functions have scattering in-
formation from the target area. That means that we could estimate the velocity within
the target.

For the time-lapse target inversion scheme, there are three main steps:

(1) Compute the background Green’s function in the smoothed baseline model;

(2) Compute the static Green’s functions in the inverted baseline model using the
Gaussian beam based Green’s function and T-matrix from the survey surface to
the target region;

(3) Perform the local inversion, the local wavefields are updated by the Lippmann-
Schwinger equations associated with T-matrix approach within the target region.

5 Numerical results

5.1 Baseline inversion

In this section, we use a subset of the Marmousi 2 P wave velocity model [72] to test the
baseline inversion scheme. The model size is 2460 m × 1620 m. The size of the grid is
20 m ×20 m. Fig. 4(a) shows the resampled baseline model. We employ 81 sources and
123 receivers, which are both located at the surface and distributed uniformly from 0 m
to 2460 m. We employ a Ricker wavelet with the central frequency of 7.5 Hz. In this
example, we use the sequential frequency inversion scheme, which inverts frequency by
frequency. Here, we choose a frequency group of 2 Hz, 5 Hz, 8 Hz, 11 Hz, 15 Hz and
18 Hz. For each frequency, the maximum number of iterations is 30. We generated the
frequency component synthetic data and used the fast Fourier transform with a sampling
interval of 0.004 s and the total record length of 3 s. A key point of this inversion is to
choose the regularization parameter. We use the cooling scheme [24] for this test. In the
numerical tests, we find that if the regularization parameter is too small in the beginning
of the iterative process, artefacts can build-up in the inverted results, to compensate for
model errors. This is because in the scattering domain, the initial information about the
scattered wavefield is not sufficient. After many tests, we decide to use 10 as the initial
value α0 of the cooling scheme (see Eq. (3.11)). We choose a in the Eq. (3.11) as 0.9. We
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Figure 4: The baseline model and target region. (a) A subset version of the Marmousi2 P- wave velocity model;
(b) time-lapse perturbation of 300m/s.

have tested with noise-free and noisy data. For the noisy data, the random noise has been
added to each frequency component data [24]

dnoisy=

(

d+
|d|√
SNR

η

|η|

)

, (5.1)

where η is a vector with independent random numbers taken from a Gaussian distribu-
tion, and the decibel (dB) is used to measure noise level. We use the signal-to-noise ratio
(denoted by SNR) of 30 dB (3 % noise) and 26 dB (5.1 % noise), respectively.

Fig. 5(a) shows the smoothed starting model for the baseline inversion. For field case,
the smoothed starting model can be obtained by traveltime inversion. The Gaussian
beams have been computed for this model for the initial Green’s function. Figs. 5(b), (c)
and (d) show the inverted results for the subset of the Marmousi2 baseline model with
a smoothed starting model (shown in Fig. 5(a)) with noise-free data and noisy data with
the SNR of 30 dB and 26 dB, respectively. From Fig. 5(b), one can observe that the model
structure can be distinguished clearly. This implies that the inversion method works well
for noise-free data. To quantify the errors between the true model and the inversion
results, we compute the differences between the true baseline model and the inverted
baseline results with noisy data, shown as Fig. 6. From Fig. 6, one can observe that due
to the effect of a stronger noise, the error of the inverted results with signal-to-noise ratio
of 26 dB is larger than that with the signal-to-noise ratio of 30 dB.

5.2 Time-lapse inversion

In this section, we focus on the target-oriented inversion of the time-lapse model. Fig. 4(b)
shows the time-lapse perturbation model. This model is obtained by adding a perturba-
tion of 300 m/s to the baseline model. For the numerical tests, we use the same sources
and receivers as the baseline inversion. Here, we use the same Ricker wavelet, grid size



X. Huang et al. / Commun. Comput. Phys., x (201x), pp. 1-27 15

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

D
e
p

th
(k

m
)

V
e
lo

c
it

y
(m

/s
)

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

D
e
p

th
(k

m
)

V
e
lo

c
it

y
(m

/s
)

(a) (b)

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(c)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

D
e
p

th
(k

m
)

0.4 0.8 1.2 1.6 2.0 2.40.0

Distance(km)(d)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0

D
e
p

th
(k

m
)

V
e
lo

c
it

y
(m

/s
)

V
e
lo

c
it

y
(m

/s
)

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Figure 5: The baseline inversion results using Gaussian beam plus T-matrix method. (a) The smoothed starting
model; (b) the inverted result of noise-free data; (c) the inverted result of noisy data (30dB); (d) the inverted
result of noisy data (26dB).

and frequency group as the baseline inversion. The size of the target region is 600 m ×
600 m, shown as Fig. 4(b). The locations are from 1600 m to 2200 m and from 600 m to
1200 m in the horizontal and vertical directions, respectively. For the regularization pa-
rameter, we use a modified version of the cooling scheme (Jakobsen and Ursin, 2015). In
our approach, the initial value is chosen as α0 =

√

trace(H)/length(H), where H repre-
sents the Hessian matrix as before. We choose a in the Eq. (3.11) as 0.9. We generated the
frequency component synthetic data and used the fast Fourier transform with a sampling
interval of 0.004 s and the total record length of 3 s. The maximum number of iterations
is 30 for each frequency.

5.2.1 Comparison of time-lapse inversion strategies

To validate the accuracy of our target-oriented inversion approach, we have carried out
the numerical experiments on a time-lapse model in which there is a perturbation due
the time-lapse effects, shown as Fig. 4(b). For this experiment, we have tested both the
sequential difference strategy and double difference strategy. We employ the baseline
model used in the last section, which is shown in Fig. 4(a), as the true baseline model.
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Figure 6: The errors of the baseline inversion. (a) The inversion error with noise-free data; (b) The inversion
error with noisy data (30dB); (c) the inversion error with noisy data (26dB).

We have performed the full-model inversion and target-oriented inversion on this time-
lapse model. Fig. 7 shows the inverted results of the noise-free data for the time-lapse
inversion with the sequential difference strategy and double difference strategy, respec-
tively. All computations were performed on Intel (R) Xeon (R) CPU E5-4650 2.7 GHz.
The computational times of the full-model inversion with the sequential difference and
double difference strategies are 2.15×104 s and 2.11×104 s, respectively. The computa-
tional times of the target-oriented inversion with the sequential difference and double
difference strategies are 418 s and 431 s, respectively. One can see that by using the
target-oriented inversion scheme, the computational cost has been reduced by approxi-
mately 80%. Comparison of the inversion results shows that, for both of the sequential
and double difference strategies, the results of the target-oriented inversion are slightly
better than that of full-model inversion. This can easily be explained. The larger area
we have in the inversion, the more errors of the inversion will occur. We can observe
from Figs. 8(a) and (c) that for the full-model inversion there are some inversion artefacts
outside the target region. This is because the full waveform inversion has the problems
of high ill-posedness and nonlinearity. However, the potential artifacts can be avoided in
the target-oriented inversion because there is no model update outside the target region.
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Figure 7: The time-lapse inversion results of the noise-free for a perturbation of 300m/s with the true baseline
model as the starting model. (a) The full-model inversion with the sequential difference strategy; (b) the
target-oriented inversion with the sequential difference strategy; (c) the full-model inversion with the double
difference strategy; (d) the target-oriented inversion with the double difference strategy.

5.2.2 Inversion of noise-free data with the inverted baseline model

In this section, we employ the inverted baseline model of the noise-free data (shown as
Fig. 4(b)) as the starting model for the time-lapse inversion and use noise-free data for
time-lapse inversion. In this inversion, we use both the sequential difference strategy
and double difference strategy as well. Fig. 8 shows the inverted results for the time-
lapse inversion using the full-model scheme (Figs. 8(a) and (c)) and target-oriented in-
version scheme (Figs. 8(b) and (d)). We also compare the results of the target-oriented
inversion and that of the full-model inversion. From Fig. 8, one can make the following
observations: (1) whether for the target-oriented inversion or full-model inversion, the
results from the double difference strategy are better than that from the sequential dif-
ference strategy, which shows that compared with the sequential difference strategy, the
double difference strategy works better; (2) for both the sequential difference and double
difference strategy, the target-oriented scheme works nearly the same as the full-model
scheme. However, the computational cost can be reduced by target-oriented inversion.
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Figure 8: The time-lapse inversion results of noise-free data for a perturbation of 300m/s with the inverted
baseline model of noise-free data as the starting model. (a) The full-model inversion with the sequential
difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c) the full-model
inversion with the double difference strategy; (d) the target-oriented inversion with the double difference strategy.

The double difference strategy, which inverts with the data difference rather than full-
data, requires the starting baseline model that can accurately describe the kinematics and
structures, otherwise the time-lapse energy cannot be localized [7].

5.2.3 Inversion of noisy data with the inverted baseline model

To make the numerical experiments more realistic, we perform the numerical tests with
the noisy data. Fig. 9 shows the inverted results for the time-lapse inversion of the noisy
data (30 dB) using the full-model scheme (Figs. 9(a) and (c)) and target-oriented scheme
(Figs. 9 (b) and (d)). Fig. 10 shows the inverted results for the time-lapse inversion of the
noisy data (26 dB) using the full-model scheme (Figs. 10(a) and (c)) and target-oriented
scheme (Figs. 10(b) and (d)). For the inversion of the noisy data (26 dB), the computa-
tional times of the target-oriented inversion with the sequential difference and double dif-
ference strategies are 2.01×104 s and 2.19×104s, respectively. The computational times of
the target-oriented inversion with the sequential difference and double difference strate-
gies are 246 s and 602 s, respectively. The computational cost has been reduced from 70
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Figure 9: The time-lapse inversion results of noisy data (30dB) for a perturbation of 300m/s with the inverted
baseline model using the same noise-level data as the starting model. (a) The full-model inversion with the
sequential difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c)
the full-model inversion with the double difference strategy; (d) the target-oriented inversion with the double
difference strategy.

% to 80 %. The reason why the computation time is different is that because of the use of
different strategies, the computation stops at different iterations for different frequencies.
The results in Fig. 10 show clear difference for four numerical experiments from different
inversion scheme. For the sequential difference strategy, the inverted time-lapse veloc-
ity perturbation from the target-oriented scheme appears more clear, however, the result
from the full-model scheme with strong noise is not so clear. The situation improves sig-
nificantly for the double difference strategy shown in Figs. 10(c) and (d). Also, for the
double difference strategy, the results with noisy data from the full-model inversion are
slightly better than that from the target-oriented inversion.

Furthermore, we have tested a smaller time-lapse perturbation of 100 m/s. Figs. 11(a)
and (b) show the inverted results of noisy data (26 dB) with the double difference and
sequential difference strategies. From Figs. 11(a) and (b), one can observe the following
features of the inverted time-lapse perturbation: (1) although the time-lapse perturbation
can be displayed clearly, there are some artifacts outside the region of time-lapse velocity
perturbation; (2) compared with the inverted results of the perturbation of 300 m/s, the
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Figure 10: The time-lapse inversion results of noisy data (26dB) for a perturbation of 300m/s with the inverted
baseline model using the same noise-level data as the starting model. (a) The full-model inversion with the
sequential difference strategy; (b) the target-oriented inversion with the sequential difference strategy; (c)
the full-model inversion with the double difference strategy; (d) the target-oriented inversion with the double
difference strategy.
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Figure 11: The time-lapse inversion results of noisy data (26dB) for a perturbation of 100m/s with the inverted
baseline model using the same noise-level data. (a) The target-oriented inversion with the sequential difference
strategy; (b) the target-oriented inversion with the double difference strategy.
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inverted results of the perturbation of 100 m/s look less accurate. This indicates that
the smaller value of the time-lapse velocity perturbation we have, the more difficult for
inversion.

6 Conclusions

Full waveform inversion can be an effective tool for time-lapse seismic data because of its
applicability of extracting information on subsurface structure. However, the inversion
of the time-lapse seismic waveform data requires to repeat computations for monitor
survey. This renders the inversion very expensive for the reservoir monitor. Instead
of performing a full-model inversion, we focus on inversion of a target region, where
the reservoir changes occur. Jakobsen and Ursin [24] mentioned the possibility of doing
T-matrix based time-lapse inversion, but never did this. The main finding is that we
have verified that the T-matrix approach is indeed naturally target-oriented and allows
one to reduce the computational cost of time-lapse inversion by focusing the inversion
on the target-area only. Our approach is based on the DBIT method using the integral
equation form. In our scheme, the Gaussian beam has been introduced, which allows to
compute the wavefields from the surface to the target region in the smoothed baseline
model. Then, by combining the background Green’s function using the Gaussian beam
with the T-matrix, we obtain the Green’s function for the time-lapse inversion. For the
local inversion of the target region, the T-matrix is used to update the wavefields within
the target region.

Numerical examples are presented, showing that because of the limited size of the
target-oriented time-lapse inversion, the computational cost has been reduced by ap-
proximately 80%. However, for the double difference strategy, the results with noise-free
data from the target-oriented inversion are better than that from the full-model inversion,
while the results with noisy data from the full-model inversion are slightly better than
that from the target-oriented inversion. That means that the double difference strategy is
relatively sensitive to the random noise. For the sequential difference strategy, compared
with the results from the full-model inversion, the results of the time-lapse model from
the target-oriented inversion are nearly the same. This method should be possible, due
to the computational efficiency, to perform a 4-D seismic full waveform inversion. Future
works will be also directed toward to a 4-D inversion of the time-lapse waveform data
and extended by the domain decomposition method [31].
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Appendix A: The Green’s function using Gaussian beam

summation

The Green’s function can be computed by a Gaussian beam summation [40, 78]

G(0)
(

x,x′,ω
)

=
i

4π

∫

dpx

pz
uGB

(

x′;x,p;ω
)

, (A.1)

where, x is the source (starting point) position vector, x′ is the subsurface scattering point
vector, the ray parameter vector p is defined by

p={px,pz}, (A.2)

where px pzare ray parameters, respectively. Further, uGB is a single Gaussian beam
[40, 41]

uGB(q1,q2,τ)=UΩ(τ)(detW)1/2exp

[

−1

2
ωqTImM(τ)q

]

=exp

{

−iω

[

t−T(τ)− 1

2
qTImM(τ)q

]}

, (A.3)

with
W (τ0,τ)=Q1(τ0,τ)+Q2(τ0,τ)[ReM(τ0)+iImM(τ0)], (A.4)

where T(τ) the traveltime along ray, Q1(τ0,τ) and Q2(τ0,τ) are real-valued matrices,

which are solutions of the dynamic ray tracing system in matrix form, q=(q1,q2)
T and

q1,q2 are the ray-centred coordinates, which can be constructed along the ray Ω. More-
over M(τ0) is the 2×2 complex-valued matrix, which represents the second-order deriva-
tives of the ray traveltime. Following Hill [79, 80], the sampling for the horizontal slow-
ness dpx can be chosen as

dpx =
1

6l
√

fmin, fmax

, (A.5)

where fmin and fmax are the lowest and highest frequencies, respectively. The initial beam
width can be chosen as

l=
Vavg

fmin
, (A.6)

where Vavg is the average velocity of the full model.
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Appendix B

Algorithm 1 Pseudo code for DBIT inversion algorithm

procedure THE TARGET-ORIENTED INVERSION ALGORITHM OF TIME-LAPSE WAVE-
FORM DATA USING THE DBIT METHOD WITH THE GAUSSIAN BEAM BASED GREEN’S

FUNCTION IS IMPLEMENTED IN THE FOLLOWING PSEUDO CODE

Initialization: define frequency-independent parameters, i.e. convergence con-

dition and initial conditions
m = initial local model;

for f =1 to f =N f do

i=0
εd =1
while ε>TargetDataResidual do

i= i+1
if i==1 then

G
(b)
RS =G

(0)
RS +G

(0)
RV T(b)G

(0)
VS

G
(b)
RV =G

(0)
RV+G

(0)
RV T(b)G

(0)
VV

G
(b)
VS =G

(0)
VS+G

(0)
VV T(b)G

(0)
VS

end

GRS =G
(b)
RS +G

(b)
RV TG

(b)
VS

GRV =G
(b)
RV+G

(b)
RVTG

(b)
VV

GVS =G
(b)
VS+G

(b)
VV TG

(b)
VS

dr=DataResidual (GRS, f )
J=SensitivityMatrix (GRV ,GVS)
H= J′ J
end

χ=χ+(ℜ(H)+αI)\ℜ(J′d)
εd =‖umonitor−dmonitor‖/‖dmonitor‖
end while

end for
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