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Abstract. In the present article we consider the problem of wave interaction with a
partially immersed, but floating body. We assume that the motion of the body is pre-
scribed. The general mathematical formulation for this problem is presented in the
framework of a hierarchy of mathematical models. Namely, in this first part we for-
mulate the problem at every hierarchical level. The special attention is paid to fully
nonlinear and weakly dispersive models since they are most likely to be used in prac-
tice. For this model we have to consider separately the inner (under the body) and
outer domains. Various approached to the gluing of solutions at the boundary is dis-
cussed as well. We propose several strategies which ensure the global conservation or
continuity of some important physical quantities.
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1 Introduction

In the design process of various floating devices, one of the main parameters to take into
account is the expected wave run-up magnitude during unavoidable over-topping events
in rough seas. Clearly, there is a need to analyze large parameter spaces, i.e. wave/wind
states, relative dimensions, orientations, etc. in order to obtain a nearly-optimal design.
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In this way we arrive naturally to the need of development of fast and accurate numeri-
cal algorithms to simulate wave fields interaction with floating structures. The methods
developed in coastal/naval engineering communities are based on an important num-
ber of simplifying assumptions (see e.g. [39, 72]) to obtain quick estimations of required
parameters. There are also well-developed analytical methods restricted essentially to
linear problems [63]. The goal of our study is to introduce into this topic a more nonlin-
ear description along with efficient methods to solve equations numerically. As a result,
we would like to be able to estimate even local characteristics of the flow. We shall make
at some point two main simplifying assumptions:

1. The waves are long, i.e. weakly dispersive.

2. The object is floating, but fixed in horizontal directions† (in contrast to freely float-
ing objects).

Because of the second assumption, we shall speak below about a partially immersed body.
Nevertheless, the model predictions will be checked against spare experimental data [47].
Despite these simplifying assumptions, there are practically important situations, where
they hold true. To give an example, the resonant wave pumping device analyzed in [12]
falls perfectly in the framework presented in this study.

The well-studied topic is the wave generation by moving structures such as ships.
Practical interest of such works is quite obvious. The first analytical steps in this direc-
tion were done by Lord Kelvin. We can refer also, for example, to early numerical (finite
difference) attempts to compute the wave field behind a ship [70]. In the problem con-
sidered in our study the structure is fixed and we are interested in wave interaction with
it. Moreover, we are looking at generated wave fields behind and in front of the floating
object.

The topic of numerical modelling of the wave/(floating or immersed) body interac-
tion attracted much attention in the recent years. In water wave theory the most stud-
ied situation both by analytical and numerical techniques is the wave interaction with
a single [45, 102] or with an array [101] of floating/fixed circular cylinders. In [45] the
cylinder was allowed to move in vertical direction. Most of the numerical studies are
based on the boundary integral equations method, while analytical investigations focus
mainly on linear or, exceptionally, weakly nonlinear formulations. However, there are
a few exceptions. A mixed Eulerian-Lagrangian method was applied to describe wave-
induced motions of a floating body in [48]. On the other hand, an Eulerian spectral ele-
ment method was recently applied to wave/body interaction problems in [33]. The ulti-
mate goal of such investigations is to propose a robust and efficient methodology for the
simulation of floating real world objects such as boats [76] and/or wave energy convert-
ers [13,37,81]. In such complex applications sometimes even the full Navier-Stokes equa-
tions are solved using state-of-the-art computational techniques [62, 103]. For instance,

:In our modelling we allow the object to move freely in the vertical direction according to a prescribed law.
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in [62] the Navier-Stokes (NS) equations were solved using multiple-layer σ�coordinate
method in the presence of submerged obstacles in the flow.

The problem of wave interaction with a partially immersed body is presented below
in the framework of a hierarchy of mathematical models:

• Rotational incompressible ideal fluid flow model [58] (Eul),

• Potential flow model [93] (Pot),

• Fully nonlinear weakly dispersive wave model [40, 41, 86, 87] (SGN),

• Boussinesq-type weakly nonlinear and weakly dispersive model [9, 10, 24],

• Nonlinear shallow water (nonlinear hydrostatic or Saint-Venant) equations [22] (SV).

Every subsequent model on this list can be obtained from the previous one by applying
one simplifying assumption. The need to consider a sequence of models can be attributed
to the celebrated Ockham razor principle (lex parsimoniae), which states that among com-
peting hypothetical answers to a problem, one should select the answer that makes the
fewest assumptions [2].

In our work we shall consider in more or less detail all models listed above along
with corresponding discretization algorithms (to be described in the second part [53]). In
practice, this hierarchical approach allows us to assess the accuracy of various models
together with corresponding simplifying assumptions. The numerical algorithm is based
on the moving grid technique [55] to have a balanced and adaptive grid distribution. For
shallow water equations the computational domain is split in two parts: under the par-
tially immersed body and the rest. The beauty of our approach consists in the fact that at
this modelling level, governing equations can be solved almost analytically under the ob-
ject. Thus, the numerical treatment is needed only in the outer domain. The local surgery
of solutions at various sub-domains boundaries is done using compatibility conditions.

Using developed algorithms we can study the influence of incident wave amplitude,
body elongation and immersion on the induced wave fields in the vicinity of the body
and the generated flow under the body. A particular attention is paid to the situation
where the partially immersed body is located near a vertical wall. The reason is that
transmitted waves may enter into a resonance with waves reflected from the wall. This
resonance would lead to anomalously high amplitudes in the interval between the im-
mersed body and the wall [49]. Moreover, we provide the comparisons of numerical
solutions to various models. Based on these comparisons we can draw some practical
conclusions on the validity range of approximate models for the wave/body interaction
problems, which are more peculiar than free wave propagation. These results will be
described in the second part of this study [53].

The present manuscript is organized as follows. The wave/obstacle interaction prob-
lem is described in Section 2 as a hierarchy of mathematical models in the inner (i.e. under
the obstacle) and outer (i.e. outside) domains. Namely, in Section 2.1 we describe the Eul
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model, the potential flow model Pot in Section 2.2. The fully nonlinear weakly disper-
sive model SGN is discussed in Section 2.3, while its non-dispersive hydrostatic version
SV in Section 2.5. The coupling (or transmission) conditions for SGN and SV models are
derived and discussed in Section 3. Finally, the article is completed by outlining the main
conclusions and perspectives of the present study in Section 4. We would like to men-
tion that all notations used in our study are summarized in Appendix “Nomenclature”
on page 44. This manuscript contains also one Appendix, which describes an alternative
derivation of compatibility conditions.

2 Hierarchy of mathematical models

The problem of wave/floating body interaction should be considered as a hierarchy of
descriptions of various complexity levels. Schematically, this situation can be depicted
as:

Simplified
ðùùùùù

SV ùñ Bouss ùñ SGN ùñ ��� ùñ Pot ùñ Eul ùñ NS (2.1)
More complete
ùùùùùùùùñ

The arrows show the direction of increasing complexity‡. Moreover, the last sequence
(2.1) of models is exact in the sense that to move in the opposite direction, at each level
only one simplifying assumption is needed. This hierarchical approach will allow us to
assess the ‘price to pay’ for each simplification. In the present work we shall pay more
attention to models from the hierarchy (2.1) since they are mostly used in applications
due to their reduced complexity. In all this study we shall neglect the influence of com-
pressibility, friction, wind stress, currents, etc. In the upcoming works we shall focus on
the hard part (Pot ðù Eul) of the hierarchy (2.1).

2.1 Euler equations

Consider a flow of an ideal and incompressible fluid, which occupies some three-dimen-
sional simply connected domain Ω �R

3. The domain Ω may be unbounded on the
sides in theoretical investigations. However, in practical simulations we assume that Ω

is bounded by vertical lateral walls on the sides§. The domain Ω is bounded from below
by a prescribed solid bottom y��hpx,tq and from above by the free surface y� ηpx,tq. In
order to describe analytically the boundaries, we introduced implicitly a Cartesian sys-
tem of coordinates Ox1x2y. The vector x is the canonical projection of the 3D vector px,yq
on the horizontal coordinate plane, i.e. x�

�

x1,x2
�

PR
2. The vertical axis Oy points in

;In the present study we do not consider the last class of models NS, which is rather reserved for CFD-type
applications.
§This geometric configuration mimics the configuration of a traditional laboratory wave tank.
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Figure 1: Sket
h of the �uid domain with a �xed partially immersed body. A side view of the �uid/solid domain

is shown in Fig. 4.

the direction opposite to the gravity vector g� p0,0,�gq PR3. Traditionally we assume
also that the coordinate plane y�0 coincides with the still water level. See Fig. 1 for an
illustration of the fluid domain definition. To underline the fluid dynamic character of
the problem, we shall denote the fluid domain as Ωptq, where t¥0 is the time coordinate.

The projection of a 3D domain Ωptq onto the horizontal plane will be denoted by

Ω
def
:�πx;t

�

Ωptq
�

, i.e.

πx;t : Ωptq�R
2
�RÝÑR

2, px,yq
πx;t
ÞÝÑx.

Thus, πx;t at any fixed time t is the canonical projection of product space. The fluid
domain Ωptq has to be non-degenerate, i.e.

Hpx,tq
def
:�ph�ηqpx,tq¥h0¡0, �t¥0, �xPΩ,

where we introduced also the total water depth variable H : Ω�R
�

0 ÝÑR
�. Moreover, we

assume that the fluid density ρ and the gravity acceleration g are constant throughout our
experiments. All other forces such as friction, wind forcing, Coriolis, etc. are neglected in
the present study.

In the general 3D Eulerian description, one has to determine the field of fluid particle
velocities

�

u,vq : Ωptq�R
�

0 ÝÑR
3, with u being the horizontal velocity vector u�pu1,u2q

and v the vertical component, the pressure distribution p : Ωptq�R
�

0 ÝÑR and the free
surface excursion η :Ω�R

�

0 ÝÑR, which satisfy in domain Ωptq the system Eul of incom-
pressible Euler equations:

∇ u�vy� 0̆, (2.2)

ρut�ρpu ∇qu�ρvuy�∇p� 0̆, (2.3)

ρvt�ρu ∇v�ρvvy�py��ρg, (2.4)
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where subscripts denote partial derivatives, i.e. p�qt
def
:� Bp�q

Bt or p�qy
def
:� Bp�q

By . On the right hand

side of the first two equations, 0̆ (0̆) denotes a (vector�) function, which takes a constant
zero value (zero vector), i.e.

0̆ : Ωptq�R
�

0 ÝÑR, px,y,tq
˘0
ÞÝÑ0.

Notice, that the domain of 0̆ (0̆) might be restricted depending on the equations where
this map appears. This happens, for example, when we specify the boundary conditions.
The restricted domain can be inferred, in general, from the context. Thus, we shall not
make any special comments on this point in each particular situation.

We introduced also the horizontal gradient symbol ∇�

�

B

Bx1
, B

Bx2

�

. It is to be manipu-
lated as usual:

∇ u�
Bu1

Bx1
�

Bu2

Bx2
, u ∇�u1

B

Bx1
�u2

B

Bx2
.

On the free surface we have to satisfy two boundary conditions:

ηt�u ∇η�v� 0̆, y� ηpx,tq, xPΩzB, t¥0, (2.5)

p� 0̆, y� ηpx,tq, xPΩzB, t¥ 0, (2.6)

where as before B
def
:�πx;t

�

Bptq
�

(the definition of domain Bptq will be properly dis-
cussed in Section 2.1.2). On the moving bottom we have a kinematic impermeability
condition:

ht�u ∇h�v� 0̆, y��hpx,tq, xPΩ, t¥0. (2.7)

Of course, we have to admit that all functions are sufficiently smooth to have at least first
order derivatives.

2.1.1 Energy conservation

In order to derive the total energy conservation equation for the full Euler equations

given above, we obtain the evolutions of the kinetic K : Ωptq�R
�

0 ÝÑR
�

0 , K
def
:� ρ

2

�

|u|2�

v2
�

and potential T : Ωptq�R
�

0 ÝÑR, Tp ,y,�q
def
:� ρgy energies separately for the sake of

simplicity. The kinetic energy equation is obtained by multiplying¶ Eq. (2.3) by u and
Eq. (2.4) by v and summing them up we obtain:

u (2.3)�v�(2.4) ùñ Kt�u ∇pK�pq�vpK�pqy�ρgv� 0̆. (2.8)

The potential energy equation reads:

Tt�u ∇T�vTy�ρgv� 0̆. (2.9)

¶The multiplication here is understood in the sense of the standard scalar product in E
2.
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By summing up Eqs. (2.8) and (2.9) we obtain the total energy E :Ωptq�R
�

0 ÝÑR, E
def
:�K�

T conservation equation:

(2.8)�(2.9) ùñ Et�u ∇pE �pq�v�pE �pqy� 0̆. (2.10)

Finally, by taking into account the incompressibility condition (2.2) we obtain the last
Eq. (2.10) in the conservative form:

(2.10)�pE �pq�(2.2) ùñ Et�∇
�

pE �pqu
�

�

�

pE �pqv
�

y
� 0̆. (2.11)

The last equation holds everywhere in the fluid domain Ωptq.

2.1.2 Partially immersed body

We assume that the partially immersed body occupies the domain B�R
3 has vertical

side walls, which are impermeable for fluid particles, as it is common in many practi-
cal problems. Moreover, we assume that the body cannot move in horizontal directions.
In this sense it is fixed. However, we allow another degree of freedom: our body may
perform vertical displacements according to a prescribed law. According to the last com-
ment, it is judicious to denote the domain as Bptq to underline its dynamic character. The
function y� dpx,tq prescribes the instantaneous position of the object bottom. Since the
body is partially immersed into water, we have

dpx,tq 0, �t¥0, �xPB.

The function d:B�R
�

0 ÝÑR
� is assumed to be known. The object bottom impermeability

condition can be readily written:

dt�u ∇d�v� 0̆, y�dpx,tq, xPB, t¥0. (2.12)

Similar formulations exist for all problems where the body bottom moves according to
a prescribed trajectory. To give an example of practical importance, the resonance wave
pumping set-up studied analytically and experimentally in [12, 13] suits perfectly our
framework. Additionally, our description admits objects Bptq with impermeable, but
deformable bottoms provided that lateral walls of Bptq remain always vertical and the
deformation is known through the function d.

The impermeability condition of wet lateral walls (of the immersed body Bptq and of
the wave tank Ωptq) can be written as:

u n� 0̆, px,yqPcl
�

Ωptq
�

£

cl
�

Bptq
�

, (2.13)

where n PR2 is the vector of the unitary exterior normal to the wall containing only
horizontal components||. Finally, to obtain a well-posed problem, one has to prescribe

}This boundary condition can be ‘derived’ from 3D by noticing that from our assumptions n3�pn,0q PR3

and
pu,vq n3�pu,vq pn,0q�u n�v�0�u n.

Thus, the vertical velocity component v does not play any rôle in this boundary condition.
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Figure 2: Disposition of various domains in the Ox1x2 plane.

the compatible initial conditions: the initial position of the free surface excursion ηpx,0q,
x PΩzB along with initial velocities of fluid particles pu,vqpx,y,0q,px,yq PΩp0q. We re-
mind that the initial positions of the fluid and object bottoms are given through functions
�hpx,0q, xPΩ and dpx,0q, xPB correspondingly.

2.1.3 Domain dissection

From now on we introduce some shorthand notations for various useful domains in the
plane Ox1x2 to simplify the problem description. Two projections Ω and B have already
been introduced. In this section we rename them to have uniform notation throughout
the rest of our manuscript:

Dd

def
:�Ω, D�

def
:�B, D�

def
:�Dd

zD�. (2.14)

By our assumptions made hereinabove, the domains Dd, D� and D� are fixed, i.e. their
locations do not change with time. Moreover, obviously we have Dd

�D�

�

D�. We
introduce also the two boundaries:

Γ
�

def
:�BD�, Γ

d

def
:�BDd.

We shall also assume that the interior domain D� does not touch (i.e. intersect with) the
boundary of the fluid domain Dd, i.e. Γ

�

�

Γ
d

�∅.
In new notations, the boundary condition (2.7) has to hold for �xPDd, Conditions (2.5),

(2.6) hold for �x PD� and Condition (2.12) for �x PD�. Finally, the boundary condition
(2.13) has to be satisfied for �xPΓ

�

�

Γ
d. Various domains are illustrated in Fig. 2. A side

view of the fluid domain is shown in Fig. 4.

The first lyrical digression. The dissection of the computational domain presented above
may appear to be artificial for 3D models (NS, Eul, Pot), however, this step is absolutely
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necessary for depth-integrated models (SGN, SV) for the reasons which will become clear
below. The design of numerical algorithms follows closely this observation [53]. In this
digression, we would like to discuss the historical origins of the idea to dissect the fluid
domain according to the partition (2.14).

The first author of the present manuscript has been working in the field of gas dy-
namics until approximatively 1984. In particular, he has been investigating the problem
of gas flow in channels of varying cross-section [98, 99]. These works were based on the
pioneering paper by I. K. Yaushev (1967) [97]. The main point is that there is a certain
analogy between our problem and these gas flows. In particular, in points where there is
a jump in channel cross-section, the conservation of momentum does not hold anymore
and some extra conditions have to be used at the interface between two sub-domains.

At the end of the (19)80’s the problem of wave/floating body interaction has been
discussed in the Computational Mathematics seminar** in Krasnoyarsk, where the first
author was present at that time. This topic was stimulated by an experimental campaign
conducted in Leningrad†† on wave/anchored pontoon interaction. The first mathemat-
ical models were proposed in the framework of the nonlinear shallow water equations
(SV). However, the question of numerical simulation was still open. It is at this mo-
ment that the analogy with the gas dynamics has been noticed, probably, for the first
time and the previous knowledge [97–99] was implemented in shallow waters. So, def-
initely, the inspiration for this study comes from the gas dynamics. The first results of
this work started to appear in the early (19)90’s in the following papers [73, 74, 95]. To
our knowledge, this approach was later rediscovered in [42,46], where the modern era of
wave-body interaction begins.

2.1.4 Pressure boundary conditions

We present also another reformulation of boundary condition (2.13) imposed on immersed
body impermeable vertical sides Γ

�. We believe that this consequence might be helpful in
designing, for example, numerical algorithms for this problem. Let us consider a regular
point xPΓ

�. Let n be the vector of unit exterior normal to the object D� in the same point
x. It is important to notice that vector n is constant for each side of D� (provided that
the immersed body B has a polygonal shape). By taking a 2D scalar product of Eq. (2.3)
with normal vector n we obtain:

1
ρ
∇p n��pu nqt�u ∇pu nq�vpu nqy.

Taking into account the Condition (2.13), we obtain the following consequence:

B p

Bn

def
:�∇p n� 0̆, �xPΓ

�, dpx,tq¤y¤ ηpx,tq, �t¥0. (2.15)

��We would like to add a little precision: the notion of a ‘seminar’ in the Soviet Union better corresponds to
the modern notion of a ‘working group’.
::Currently Saint Petersburg.
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However, we do not stop here, since from the last identity, we can derive another useful
consequence for the free surface behaviour on along the solid boundary. Indeed, the
dynamic boundary condition (2.6) can be rewritten as

p
�

x,ηpx,tq,t
�

�0, �xPD�, �t¥0. (2.16)

By taking the horizontal gradient operator ∇ of (2.16), we obtain:

∇p�py∇η� 0̆, �xPD�, �t¥0.

By restricting the last differential identity to the points on boundary Γ
� and taking the

scalar product with n, in accordance with consequence (2.15) we obtain:

Bη

Bn
� 0̆, �xPΓ

�, �t¥0.

Thus, the free surface always meets the solid boundary at the right angle. It is not difficult
to generalize the proof to more general situations. The case of curvilinear object boundary
is treated in the following section.

2.1.5 Free surface behaviour in the vicinity of the partially immersed body

As we supposed in the beginning of our study, we consider the case when the partially
immersed body Bptq with vertical lateral boundaries �t¥0. More precisely, we can de-
scribe this boundary as

B‖Bptq :ñΓ
�

�

�

d|Γ�px,tq,�8
�

�R
3, Γ

�

�πx;t
�

B‖Bptq
�

. (2.17)

The function dp ,tq : D�

ÝÑR
� gives us the instantaneous position of the object Bptq

bottom. The second identity in (2.17) expresses mathematically the fact that the object
remains vertical during its motion. The upper limit in B‖Bptq is taken to be �8 (here
|8|�ℵ1) for the sake of convenience. We just assume that the body is high enough to
avoid the wave overtopping on it. More precisely, in this section we shall work on the
‘wet’ part of the boundary, where the traces of various fluidic fields can be computed:

�

B‖Bptq
def
:�Γ

�

�

�

d|Γ�px,tq,η|Γ�px,tq
�

�B‖Bptq.

Our strategy consists in studying first the normal derivative of the pressure p described
in Eul model along the ‘wet’ points on �

B‖Bptq. In this section we treat in details the
case when the boundary projection Γ

� is a (piecewise) smooth oriented closed curve in
R

2. For the sake of simplicity, we shall choose a natural parametrization x� rpsq, with
sP
�

0,S
�

being the arc-length parameter increasing in the positive direction along the curve
Γ
�, whose length is S. The starting point is immaterial. The orientation is chosen* to

�We mention that the change in orientation (öø÷) changes the direction of the tangent vector τpsq to the
opposite τpsqø�τpsq. However, the principal normal npsq is invariant under this transformation since the
direction of npsq depends on the local convexity properties of the curve Γ

�.
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be counter-clockwise ö. Then, vector τpsq
def
:� 9rpsq is the unit tangent vector to the curve

Γ
� [80]. According to the first Frenet-Serret formula, vector :rpsq is directed along the

principal normal npsq and
τ n� 0̆, :r�κn, (2.18)

where κ :
�

0,S
�

ÝÑR
� is the curvature defined as κpsq

def
:� |:rpsq|. The first relation in (2.18)

implies that τpsqKnpsq, �sP
�

0,S
�

, while the second relation can be rewritten as

9τ�κn. (2.19)

The curvature κpsq is always non-negative and it vanishes only on rectilinear portions
of the curve Γ

�. For the purposes of this section it is more convenient to use another
vector

Ñ

n psq, which is the unit exterior normal to the fluid domain (which projects on D�)
surrounding the object Bptq. In other words, for �sP

�

0,S
�

the vector
Ñ

n psq points inside
Bptq. This property explains the major advantage of the vector

Ñ

n psq over the vector
of the principal normal npsq, which can point inside or outside Bptq depending on the
local convexity properties† of the domain D�. Eq. (2.19) can be re-written in terms of the
interior normal (to the body Bptq)

Ñ

n function, if one introduces the signed curvature 8κ,
which is positive on convex and negative on concave portions of Γ

�:

9τ� 8κ
Ñ

n . (2.20)

According to the impermeability condition (2.13) and taking into account the fact that
the curve Γ

� is stationary (i.e. does not evolve in time), we have the following representa-
tion of the horizontal velocity vector upx,y,tq in the points of �

B‖Bptq:

upx,y,tq�uτpx,y,tqτpxq, px,yqP �

B‖Bptq,

where uτ is the tangential component of the velocity vector upx,y,tq:

uτ
def
:�u τ.

We assume that Eq. (2.3) is verified up to the boundary �

B‖Bptq and we multiply‡ it by
Ñ

n

on the right:

ρut
Ñ

n�ρ
�

pu ∇qu
�

Ñ

n�ρvuy
Ñ

n�
B p

B

Ñ

n
� 0̆, px,yqP �

B‖Bptq.

:Indeed, everything depends on the rotation direction of the tangent vector τpsq, when we move along the
curve Γ

�. Namely, if along a local portion of the curve Γ
�

loc � Γ
�

�BD� the domain D� is locally convex
(i.e. for every pair of points on Γ

�

loc, the straight line segment joining this pair of points entirely belongs to
the closure clpD�q), then τpsq rotates in the counter-clockwise direction and the principal normal npsq inside
the body Bptq. On the other hand, if the curve portion Γ

�

loc is concave, then τpsq rotates in the clockwise
direction and npsq points to the exterior of Bptq.
;The multiplication here is understood in the sense of the standard scalar product in E

2.
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Now, we take into account the fact that vector
Ñ

n p�q does not depend on (independent)
variables y and t:

ρpu
Ñ

nqt
loomoon

�

˘0

�ρ
�

pu ∇qu
�

Ñ

n�ρvpu
Ñ

nqy
loomoon

�

˘0

�

B p

B

Ñ

n
� 0̆, px,yqP �

B‖Bptq.

Thanks to the impermeability condition (2.13) two terms vanish. Thus, the last equation
simplifies to

ρuτ

�

pτ ∇q�puττq

�

Ñ

n�
B p

B

Ñ

n
� 0̆, px,yqP �

B‖Bptq. (2.21)

After some elementary computations and using the identity§
pτ ∇qτ� 9τ we obtain:

pτ ∇q�puττq�pτ ∇uτqτ�uτ 9τ.

Henceforth, Eq. (2.21) takes the form:

ρuτpτ ∇uτq�pτ
Ñ

nq�ρu2
τp 9τ

Ñ

nq�
B p

B

Ñ

n
� 0̆, px,yqP �

B‖Bptq.

Since τp�qK

Ñ

n p�q and thanks to the modified Frenet-Serret equation (2.20) we obtain that
9τ

Ñ

n� 8κ. Thus, we finally obtain:

B p

B

Ñ

n
��ρu2

τ 8κ, px,yqP �

B‖Bptq. (2.22)

In order to make a passage from the pressure normal derivative B p

B

Ñ

n
to that of the free

surface excursion Bη

B

Ñ

n
on the boundary Γ

�, we shall assume that the free surface dynamic

§Let us provide some details about these computations. For any two vector functions a,b :R2
ÝÑR

2 and a
scalar function α :R2

ÝÑR we have the following vectorial identity:

pa ∇q�pαbq�pa ∇αq�b�αpa ∇qb.

Thus, by taking a�b�τ and α�uτ in our case we readily obtain:

pτ ∇q�puττq�pτ ∇uτq�τ�uτpτ ∇qτ.

Now we have to transform the last term on the right-hand side of the last equation. The curve Γ
� is

parametrized as x� rpsq�
�

r1,r2
�

. Let us introduce also the components of the tangent vector τ�pτ1,τ2q.
Then, in every regular point on Γ

� we have:

9τ�

�

Bτ1
Bs
Bτ2
Bs

�

�

�

Bτ1
Bx1

�

dr1
ds �

Bτ1
Bx2

�

dr2
ds

Bτ2
Bx1

�

dr1
ds �

Bτ2
Bx2

�

dr2
ds

�

�

�

Bτ1
Bx1

�τ1�
Bτ1
Bx2

�τ2
Bτ2
Bx1

�τ1�
Bτ2
Bx2

�τ2

�

�pτ ∇qτ.

Hence, we finally obtain that
pτ ∇q�puττq�pτ ∇uτq�τ�uτ 9τ.

This completes our computational comment.
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boundary condition (2.16) in the exterior domain D� holds up to the boundary Γ
� as well:

ppx,ηpx,�q,�q� 0̆, �xPΓ
�.

By taking the horizontal gradient ∇(2.16) and taking the trace at the boundary Γ
�, we

readily obtain that

∇p�py∇η� 0̆, �xPΓ
�, y� ηpx,tq.

After taking the scalar product with vector
Ñ

n on the right, we obtain:

B p

B

Ñ

n
�py

Bη

B

Ñ

n
� 0̆, �xPΓ

�, y� ηpx,tq.

Finally, by using the previously derived Identity (2.22) at the free surface y� ηpx,tq, we
arrive to the desired expression for the normal derivative of the free surface η:

py
Bη

B

Ñ

n
�ρu2

τ 8κ, �xPΓ
�, y� ηpx,tq. (2.23)

We underline the fact that the last result does not depend on the chosen orientation of the
curve Γ

�.

Remark 2.1. If B p
By

�

�

y�ηpx,tqpx,tq� 0, then Eq. (2.23) can be solved with respect to Bη

B

Ñ

n
. We

have an intuition¶ that for non-breaking waves B p
By

�

�

y�ηpx,tq  0̆. Thus, Eq. (2.23) tells us

that the free surface η meets the solid boundary at the right angle only if 8κ� 0̆ or uτ� 0̆.
The former corresponds to (locally) flat boundaries and the latter to the fluid at rest state.

¶Indeed, our intuition seems to be supported by some scientific studies. For an idea fluid in the absence
of wind and surface tension, the vertical balances the local inertia of the wave field. Namely, the vertical
momentum balance equation (2.4) can be rewritten as:

B p

By
��ρpa

Ö

�gq,

where a
Ö

is the Lagrangian vertical particle acceleration. From the last equation one notices that B p
By vanishes

if and only if a
Ö

��g. Thus, the question on the sign of B p
By can be answered by comparing a

Ö

with g.
Historically, the equality a

Ö

��g was proposed first as a dynamical criterion for the onset of breaking
by Phillips (1958) [79]. Later, Longuet-Higgins (1985) [64] proved that

∣

∣a
Ö

∣

∣

 

g
2 for the limiting steady

Stokes wave. Recent wave tank experiments performed and analysed by Shemer and Noskowitz (2013) [89]
confirmed Longuet-Higgins’s theoretical result by showing that a

Ö

�g does not vanish even for unsteady

waves and at the onset of breaking. This is more than enough to conclude that one can express Bη

B

Ñ

n
from

Eq. (2.23) (we would like to thank Dr. Francesco Fedele (Georgia Institute of Technology, USA) for clarifying
this situation for us).
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A lyrical digression

It is so widely believed that the free surface meets the solid boundary at the right angle,
that we decided to provide here a simple analytical solution, which will allow us to check
empirically the Relation (2.23). Consider an ideal incompressible fluid (with constant
density ρ) in a cylinder of radius R rotating around its vertical axis Oy with constant
angular velocity ̟. The cylinder is not entirely filled. So, the fluid is bounded above by
the free surface and below by the solid cylinder base. The sketch of the fluid domain with
rotating cylinder is shown in Fig. 3.

Figure 3: Sket
h of the �uid domain in the rotating 
ylinder problem.

It is natural to introduce a cylindrical coordinate system Orϕy to describe this situ-
ation. An axi-symmetric steady|| analytical solution to the full Euler equations in this
situation is well-known if one assumes the pressure to be hydrostatic [58, Section §26],

}The steady Euler equations in cylindrical coordinates read:

Bur

Br
�

Buϕ

Bϕ
�

Bv

By
�

ur

r
�0,

ur
Bur

Br
�

1
r

uϕ
Bur

Bϕ
�v

Bur

By
�

u2
ϕ

r
�

1
ρ

B p

Br
�0,

ur
Buϕ

Br
�

1
r

uϕ
Buϕ

Bϕ
�v

Buϕ

By
�

uruϕ

r
�

1
ρr

B p

Bϕ
�0,

ur
Bv

Br
�

1
r

uϕ
Bv

Bϕ
�v

Bv

By
�

1
ρ

B p

By
��g,

where p is the pressure as above, ur is the radial component of the velocity, uϕ is the rotational component
and v is the axial velocity.
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i.e.
ppr,yq�ρg

�

ηprq�y
�

,

where r
def
:� |x|¤ R is the radial coordinate. The free surface is then determined by the

following formula:

ηprq�h0�
p̟rq2

2g
ðñ ηpxq�h0�

̟2 |x|2

2g
, (2.24)

where h0 is the free surface height at r�0. These two elements of the solution are already
enough to discuss the contact of the free surface η with cylinder boundary. However, to
complete the solution we provide here also the velocity field in cylindrical

ur� 0̆, uϕpr,φ,yq�̟r, v� 0̆,

and Cartesian coordinates:

u1px,yq��̟x2, u2px,yq�̟x1, v� 0̆.

Since we have an explicit expression (2.24) for the free surface η, we can compute its
normal derivative (in the outer direction n) at the boundary:

Bη

Bn
�

Bη

Br
�

̟2R

g
, r�R.

We notice that the tangential component of the horizontal velocity field at the boundary
r�R is uτ�̟R. Thus, the normal derivative of the free surface can be expressed in terms
of uτ as

Bη

Bn
�

u2
τ

Rg
. (2.25)

The last formula shows that the contact cannot happen at the right angle since in every
point of the contact line Bη

Bn �0̆. However, let us check it by comparing with the prediction
of the previously derived general formula (2.23). Since the pressure is hydrostatic, we
readily obtain py��ρg. The cylinder lateral boundary is the circle of radius R. Thus, its

signed curvature is 8κ��
˘
1
R . By substituting all these elements into Eq. (2.23) we obtain:

�ρg
Bη

Bn
��ρ

u2
τ

R
.

It is not difficult to see after some simplifications that the last formula coincides with
Eq. (2.25), which is an indirect confirmation of the boundary condition (2.23).

To conclude this digression we would like to stress one more time that the contact
angle of the free surface with a solid boundary depends on the curvature of the vertical
wall, the tangential fluid velocity in the point and on the pressure gradient in the vertical
direction.
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2.2 Potential flow model

In this section we perform the reduction from Eul to Pot. The main idea behind this
reduction is to reduce the number of unknown functions by assuming that the velocity
field derives from a potential function φ : Ωptq�R

�

0 ÝÑR in the following way:

u�∇φ, v�φy, px,yqPΩptq. (2.26)

In this way we obtain a model of incompressible and irrotational flows of an ideal fluid.
Nevertheless, in water wave community the formulation presented in this section is re-
ferred to as the full water wave problem (see e.g. [96]). In mathematical terms one has to
find a harmonic function φ in the fluid domain:

∇
2φ�φyy� 0̆, px,yqPΩptq,

which satisfies certain nonlinear boundary conditions, which can be readily obtained from
those given in Section 2.1. So, on the free surface we have to satisfy the kinematic and
dynamic boundary conditions respectively:

ηt�∇φ ∇η�φy� 0̆, y� ηpx,tq, xPD�, �t¥0,

φt�
1
2
|∇φ|2�

1
2

φ2
y�gη� 0̆, y� ηpx,tq, xPD�, �t¥0.

On the solid bottom of the wave tank we have the impermeability condition:

ht�∇φ ∇h�φy� 0̆, y��hpx,tq, xPDd, �t¥0.

A similar condition hold on the object bottom as well:

dt�∇φ ∇d�φy� 0̆, y�dpx,tq, xPD�, �t¥0.

Finally, on lateral solid boundaries of the wave tank and of the immersed body, we have
the following impermeability condition:

Bφ

Bn

def
:�∇φ n� 0̆, xPΓ

�

¤

Γ
d, �t¥0,

xPΓ
� : dpx,tq¤y¤ ηpx,tq,

xPΓ
d : �hpx,tq¤y¤ ηpx,tq.

To obtain a well-posed problem, we have to prescribe also the compatible initial con-
ditions for the free surface elevation ηpx,0q, x PD� and the velocity potential** φpx,y,0q,
px,yqPΩp0q.

��We notice that it is actually enough to specify the trace of the velocity potential on the free surface

ϕpx,0q
def
:�φ

�

x,ηpx,0q,0
�

, x PD� to obtain a well-posed problem, since the rest can be easily reconstructed
by requiring that φpx,y,0q be a harmonic function.
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The total energy density for the potential flow formulation Pot is usually defined as:

E

ρ
�

1
2

�

|∇φ|2�φ2
y

�

�gy.

The quantity
´

D

³η

�hE dydx is conserved†† (locally) in every sub-domain D�D� if the
fluid bottom is (globally) steady. The total energy conservation equation (2.11) holds ev-
erywhere in the fluid domain Ωptq. We only mention here that the depth-integrated total
energy

³η

�hE dy for potential flows Pot plays a very important rôle of the Hamiltonian
functional with the standard symplectic operator (here simply matrix) and correspond-

ing canonical variables being ϕpx,tq
def
:�φ

�

x,ηpx,tq,t
�

and ηpx,tq (see e.g. [11, 78, 100]).
The fluid pressure in this formulation can be easily reconstructed in any point of the

fluid by using the well-known Cauchy-Lagrange integral:

p

ρ
��

�

φt�
1
2
|∇φ|2�

1
2

φ2
y�gy

	

, px,yqPΩptq, t¥0.

Fluid particle velocities can be reconstructed by differentiating the velocity potential func-
tion according to (2.26). This completes the description of the potential model Pot.

2.3 Fully nonlinear weakly dispersive models

The reduction PotðùSGN for freely propagating waves over general bathymetries is
well-understood nowadays. Consequently, we do not repeat the derivation here to fo-
cus on the specific issues related to the presence of a partially immersed body. For our
approach to this derivation we refer to this recent review [51] (and to [50] for globally
spherical geometries).

Our task consists in specifying SGN equations in the outer domain D�, under the ob-
ject Bptq in the inner domain D� and we have to specify how to glue these solutions along
the boundary Γ

� of two domains (see Fig. 2 for an illustration). The peculiarity here is that
under the object Bptq the fluid layer is bounded by two surfaces (impermeable bound-
aries) with prescribed motions. It turns out that this situation is actually simpler than
the free surface regime in the outer domain D�. Moreover, it is not difficult to see that
solutions in two sub-domains influence each other and, thus, they are inter-dependent. It
means that one has to construct both solutions simultaneously using gluing (or compati-
bility) conditions to be discussed below. A sketch of the side view of the computational
domain is shown in Fig. 4.

::Obviously, we can speak also about the energy conservation under the floating body Bptq. However, to
have the conservation of this quantity we have to require additionally the body to be fixed as well. Otherwise,
it evolves in time according to the energy input/output due to the object Bptqmotion.
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Figure 4: Side view of the 
omputational domain along with the main variables used mainly in SGN and SV

models.

2.3.1 Outer domain

In our previous study [51] we presented a unified derivation of SGN equations in the free
surface regime. This model will be used in our study to model the fluid flow in the outer
domain D�. The SGN model equations are written in terms of the total water depth H

and depth-averaged horizontal velocity vector:

ūpx,tq
def
:�

1
Hpx,tq

» ηpx,tq

�hpx,tq
upx,y,tqdy, �xPD�, �t¥0. (2.27)

Thus, we have an induced map ū :D�

�R
�

0 ÝÑR
2. The system of governing equations

reads [51]:

Ht�∇ pHūq � 0̆, (2.28)

ūt�pū�∇qū�
∇P

ρH
�

p̌�∇h

ρH
. (2.29)

The dynamics is completely defined by two functions H and ū. To close the System (2.28),
(2.29), we have to provide the expressions for the fluid pressure P and fluid pressure on
the bottom p̌� through variables H and ū:

P �ρg
H2

2
�ρ

�

H3

3
R̄1�

H2

2
R̄2




, (2.30)

p̌� �ρgH�ρ

�

H2

2
R̄1�HR̄2




, (2.31)

where the terms R̄1,2 :D�

�R
�

0 ÝÑR are defined as

R̄1
def
:�D̄p∇ ūq�p∇ ūq2, R̄2

def
:�D̄

2
h, (2.32)
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D̄ being the total (or material) derivative operator:

D̄p�q
def
:�p�qt�ū ∇p�q, D̄

n
�D̄

n�1
�D̄, n¥2.

System (2.28), (2.29) was obtained in [51] by assuming that the flow is weakly dispersive,
i.e. the dispersion parameter µ!1. We underline the fact that no assumption was made
on the nonlinearity. Thus, the model is fully nonlinear. We would like to mention also that
the momentum balance equation (2.29) can be rewritten in the following conservative
form*:

pHūqt�∇

�

Hūbū�
P

ρ
I

	

�

p̌�∇h

ρ
, (2.33)

where IPMat2pRq is the identity matrix and operation b is the tensorial product, i.e. if
a,bPR2, then

abb
def
�:A, Aij�ai �bj, i, jP2¤.

We underline the fact that Eq. (2.33) becomes a conservation law on even bottoms ∇h� 0̆.
Even if the governing equations (2.28), (2.29) are p2�1q-dimensional, its solutions

Hpx,tq, ūpx,tq can be used to reconstruct approximatively the flow structure in p3�1q-
dimensions. The pressure field in the fluid layer �hpx,tq¤y¤ ηpx,tq, xPD� can be recon-
structed to the accuracy Opµ4

q using the following formula:

ppx,y,tq |ùρ
�

Hpx,tq�
�

y�hpx,tq
�

	

�

�

g�R̄2px,tq
�

�ρ

�

H2
px,tq
2

�

�

y�hpx,tq
�2

2




R̄1px,tq, xPD�. (2.34)

We notice that expressions (2.30), (2.31) can be easily derived from (2.34) since

Ppx,tq�
» ηpx,tq

�hpx,tq
ppx,y,tqdy, p̌�px,tq� p

�

x,�hpx,tq,t
�

.

The horizontal components of the 3D velocity field upx,y,tq are usually approximated to
asymptotic order Opµ2

q. However, for irrotational flows of the class Pot, one achieves the

�Eq. (2.33) is a differential consequence of Eqs. (2.28), (2.29). Namely, if one multiplies Eq. (2.28) by ū and
Eq. (2.29) by H, after some simple algebro-differential transformations, one arrives to (2.33). This scheme
can be summarized as:

(2.28)�ū�(2.29)�Hùñ (2.33).
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accuracy Opµ4
q [51]:

upx,y,tq |ùūpx,tq�
�

Hpx,tq
2

�

�

y�hpx,tq
�




�

�

∇pD̄hpx,tqq�∇hpx,tq
�

∇ ūpx,tq
�

	

�

�

H2
px,tq
6

�

�

y�hpx,tq
�2

2




∇p∇ ūpx,tqq, xPD�. (2.35)

It is not difficult to check that the proposed asymptotic expression respects perfectly Def-
inition (2.27). The vertical velocity component vpx,y,tq can be reconstructed to accuracy
Opµ2

q as follows:

vpx,y,tq |ù�D̄hpx,tq�
�

y�hpx,tq
�

p∇ ūqpx,tq, xPD�. (2.36)

Moreover, Eqs. (2.28), (2.29) verify the following total energy (local) balance equation:

pHE qt�∇

�

�

HE �P
�

ū
	

��p̌�ht, xPD�. (2.37)

The derivation of the last equation can be found†, for example, in [36]. It is not difficult
to see that on static bottoms, i.e. h�hpxqùñht� 0̆, Eq. (2.37) becomes a conservation law.
The total energy E is defined as [36, 51]

E

ρ

def
:�

| ū|2

2
�

H2

6

�

∇ ū
�2
�

H

2
p∇ ūqD̄h�

pD̄hq2

2
�g

H�2h

2
. (2.38)

Eqs. (2.28), (2.29) have to be completed by appropriate initial and boundary condi-
tions to obtain a well-posed problem. Since the wave tank is bounded by vertical imper-
meable walls, then for SGN model we impose

ū n� 0̆, xPΓ
d, (2.39)

where n is the unit exterior normal to Γ
d. However, some other types of boundary con-

ditions might be imposed. Since the wave tank boundary Γ
d has a polygonal shape, we

can propose the following useful consequence of the equation of motion (2.29) and of
non-permeability condition (2.39):

BP

Bn
� p̌�

Bh

Bn
, xPΓ

d,

:We would like to underline the fact that Eq. (2.37) can be derived at least by two different approaches. The
first method consists in deriving the total energy conservation equations as a differential consequence of
System (2.28), (2.29) similarly to the derivation given in Section 2.3.3 for the inner domain D�. The other
method consists in applying the depth-averaging operation to the total energy conservation Eq. (2.11) in the
full Euler model Eul.
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where the pressure P is related to other dynamic variables H and ū through Eq. (2.30).
Moreover, on the exterior boundary we shall use the relation

Bη

Bn
� 0̆, xPΓ

d, (2.40)

whose derivation is similar to the one given in Section 2.1.5, taking into account the fact
that the boundary Γ

d consists of a polygon.
On the interior boundary Γ

� we use an analogue of Condition (2.23) derived in Sec-
tion 2.1.5 for the free surface excursion η, where we replace the pressure p of the 3D
model by the reconstructed pressure (2.34) and the horizontal velocity u is replaced by
the depth-averaged one ū:

py
Bη

Bn
�ρū2

τ 8κ, �xPΓ
�,

where 8κ is the signed curvature‡ of the boundary Γ
�. The derivation of Eq. (2.23) along

with more precise definition of the signed curvature are given in Section 2.1.5. In many
practical problems the floating object can be approximated by a polygonal shape with
straight lines as sides. In this case, the last condition simplifies to

Bη

Bn
� 0̆, xPΓ

�.

However, there are also compatibility conditions to be satisfied on Γ
� to glue solutions in

inner D� and outer D� domains. They will be discussed below in Section 3.

A lyrical digression

In this section we would like to discuss the total energy definition (2.38) since it differs
(in the potential part) from the classical definition, which can be found in [93], to give
an example. The same comments apply also to the total energy definition in the inner
domain D� that will be given below in the following section. The energy density E is
composed of the kinetic and potential energies densities of the flow:

E

ρ

def
:�

|ū|2

2
�

H2

6

�

∇ ū
�2
�

H

2
p∇ ūqD̄h�

pD̄hq2

2
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

def
�:

K

ρ

�g
H�2h

2
looomooon

def
�:

T

ρ

.

It is desirable from physical and mathematical points of view to have a positive-definite
energy definition. The positive-definiteness of the kinetic energy K can be demonstrated
as follows. First, let us compute the contribution of the vertical velocity v into the kinetic

;For instance, if the boundary is flat as it is schematically depicted in Fig. 1 and Fig. 2, then κ� 0̆.
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energy balance. To achieve this, we use the reconstruction formula (2.36) for v. A simple
integration gives us:

1
2H

» η

�h
v2
p ,y,�qdy�

1
2H

» η

�h

!

pD̄hq2�2py�hqp∇ ūqD̄h�py�hq2p∇ ūq2
)

dy

�

H2

6

�

∇ ū
�2
�

H

2
p∇ ūqD̄h�

pD̄hq2

2
.

Hence, we can rewrite the kinetic energy density K in a way that its positive-definiteness
becomes obvious:

K

ρ
�

|ū|2

2
�

1
2H

» η

�h
v2
p ,y,�qdy¥0.

Concerning the potential energy density T :ñρgH�2h
2 , the situation is less unambigu-

ous. In the current definition T is not positive definite since at the state of the rest
T� ρg 0̆�h�2h

2 � ρg�h
2   0̆. Everything depends on the choice of the zero potential energy

level definition. To give an example, Miles & Salmon (1985) define the potential energy
with respect to the arbitrary level y�y0 (see [69, Eq. (3.4a), p. 523]). A similar definition
of the potential energy as in our work was adopted also in [5]. However, this fact is not
an obstacle to introduce a conserved and positive-definite energy together with the cor-
responding energy norm, at least for the case of the steady bottoms, i.e. ht� 0̆. For this,
we consider the total energy:

HE �ρH
| ū|2

2
�

ρ

2

» η

�h
v2
p ,y,�qdy�ρg

η2

2
�ρg

h2

2
.

The total energy satisfies the conservation equation (2.37). Let us integrate (2.37) over any
2D domain D�R

2 bounded by vertical walls:

d
dt

¼

D

HE dx�

¾

BD

�

HE �P
�

pū nqds� 0̆, (2.41)

where ds is an element of the curve BD. The contour integral
¶

BDp�qds vanishes thanks to
the wall boundary condition (2.39). Moreover, due to the assumption that the bottom is
steady, we have

d
dt

¼

D

ρg
h2

2
dx� 0̆.

Hence, Eq. (2.41) becomes
d
dt

¼

D

rE dx� 0̆,

where

rE
def
:�ρH

| ū|2

2
�

ρ

2

» η

�h
v2
p ,y,�qdy�ρg

η2

2
.
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The quantity rE is obviously positive definite, it is conserved and it can be used, in princi-
ple, to control the solution norm in order to show model well-posedness properties [8].

Consequently, in this section we demonstrated that it is always possible to redefine
the potential energy density T to have a positive-definite norm-like quantity rE . The pres-
ence of the moving bottom effects (ht � 0̆) breaks the total energy conservation (2.41).
However, the evolution of the quantity

´

D
rE dx can still be followed by integrating the

energy balance equation (2.37) over a bounded domain D (if the domain is not bounded
by walls, we shall have some additional boundary terms in (2.41)).

2.3.2 Inner domain

By applying the same derivation technique as highlighted in [51], we can obtain the SGN

model equations in the inner domain D�, i.e. between the floating body B bottom y�
dpx,tq and the solid bottom y��hpx,tq. The averaging procedure across this fluid layer
bounded from below and above by two solid surfaces, we obtain in D�:

Qt�∇
�

Qu
�

� 0̆, (2.42)

ut�pu ∇qu�
∇℘

ρQ
�

p̌�∇h� p̂�∇d

ρQ
, (2.43)

where Q
def
:�d�h is the function D�

�R
�

0
Q
ÝÑR

�, which returns the local fluid layer height
confined between two solid surfaces. In this study we shall assume that the floating body
Bptq does not touch the solid bottom, i.e.

Qpx,tq�dpx,tq�hpx,tq¥q0¡0, �xPD�, �t¥0.

The functions p̌�, p̂� :D�

�R
�

0 ÝÑR describe the distribution of fluid pressure along lower
and upper solid boundaries respectively. The fluid pressure inside the fluid layer can be
reconstructed by the following asymptotic formula (accurate to order Opµ4

q):

ppx,y,tq |ùp̌�px,tq�ρ
�

y�hpx,tq
��

g�R2px,tq
�

�ρ

�

y�hpx,tq
�2

2
R1px,tq, xPD�. (2.44)

The accelerations R1,2 are defined precisely in the same way as specified in Eq. (2.32):
one only has to make a substitution ūøu. The column-integrated pressure function ℘ :
D�

�R
�

0 ÝÑR can be readily found from (2.44):

℘
def
:�

» d

�h
p|D�

p�,y,�qdy� p̌�Q�

ρg

2
Q

2
�ρ

�

Q3

6
R1�

Q2

2
R2




. (2.45)

We proceed similarly to find the fluid pressure at the object Bptq bottom:

p̂�
def
:� p|D�

�

�,d,�
�

� p̌��ρgQ�ρ

�

Q2

2
R1�QR2




. (2.46)
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Under the Pot model underlying assumptions, the horizontal components of the velocity
field can be reconstructed in domain D� to order Opµ4

q as

u|D�

|ùu�

�

Q

2
�py�hq




�

�

∇pDhq�∇hp∇ uq
�

�

�

Q2

6
�

py�hq2

2




∇p∇ uq, (2.47)

where D is the total (material) derivative operator based on the advection velocity u, i.e.

Dp�q
def
:�p�qt�u ∇p�q.

The vertical component v is reconstructed using the same formula (2.36) by substituting
ūøu. It is not difficult to see that u is the column-averaged velocity, since

u�
1
Q

» d

�h
u|D�

p�,y,�qdy. (2.48)

Eq. (2.43) can be recast in the conservative form:

pQuqt�∇

�

Qubu�
℘

ρ
I

	

�

p̌�∇h� p̂�∇d

ρ
. (2.49)

The last balance law can be easily derived by following this scheme:

(2.42)�u�(2.43)�Qùñ (2.49).

Between two flat solid surfaces (∇h� 0̆, ∇d� 0̆) Eq. (2.49) becomes a conservation law.
The structure of the SGN model (2.42), (2.43) in the inner domain D� is very similar to

Eqs. (2.28), (2.29) in the outer domain D�. However, there are some important differences
as well. For instance, in the outer domain D� the unknown functions are H and ū. In
the inner domain D� the counterpart of H is Q and Q�d�h is supposed to be known in
our problem formulation. Hence, one can conclude that System (2.42), (2.43) is overdeter-
mined. This would be a false impression since we have the pressure ℘ to be determined.
The last function will be known if we find p̌� or p̂� in accordance with Eqs. (2.45) and
(2.46). Thus, the number of unknowns coincides with the number of equations.

We can describe the balance of total energy for inner SGN model as follows:

pQE qt�∇
�

pQE �℘qu
�

��p̌�ht� p̂�dt. (2.50)

The derivation of the last equation is provided in Section 2.3.3. The total energy E is
defined as in Definition (2.38) with only two differences: the total water depth H has to
be replaced with the column height QùH and uù ū. The structure of energy balance
is very similar to Eq. (2.37) in the outer domain. There is only one important difference:
in the inner domain the energy can be also created by the motion of the floating object as
well. This explains the presence of two source terms in the right-hand side of Eq. (2.50)
comparing to one in (2.37). The boundary conditions for System (2.42), (2.43) are replaced
by compatibility conditions along the boundary Γ

�. They will be discussed below.
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Remark 2.2. From Eq. (2.31) it follows that for a quiescent fluid layer (ū� 0̆, ht � 0̆ and

ηt� 0̆) the pressure at the bottom is equal to

p̌�pxq�ρghpxq, xPD� (2.51)

in perfect agreement with hydrostatics. However, in the inner domain D� the quantity
p̌� is not completely determined, which prevents us from reconstructing completely the
pressure p of the 3D flow. However, from the equation of motion (2.43) and from for-
mulas (2.45), (2.46), it follows that in a quiescent fluid state in the inner domain D� we
necessarily have

∇ p̌��ρg∇h.

Consequently, in the inner domain D� we can seemingly use the same representation
(2.51):

p̌�pxq�ρghpxq, xPD�.

Moreover, the last formula guarantees also the continuity of the bottom pressure p̌� on
the common boundary Γ

�

�cl
�

D�

�

�

cl
�

D�

�

.

2.3.3 Total energy balance in the inner domain

One of the central properties of physically sound models is that they admit several im-
portant differential consequences, which are often referred to in applications as conservation
laws. In the case of an ideal homogeneous fluid, the Euler equations Eul possess the con-
servation laws for the mass, momenta (�3) and energy. While deriving approximations,
in particular in the shallow water regime relevant to this study, some of these properties
might be destroyed. For instance, the energy conservation property is quite easy to loose
(see an example of such derivation in [19, Section §2.2] and how to recover this property
using variational methods in [19, Section §3.2]). However, we believe that a physically
sound approximate model should possess the total energy conservation property. There
are good physical reasons to require this property, but also from the mathematical point
of view, the (coercive) energy conservation might be used to show well-posedness of
approximate models [8]. Finally, the energy conservation might be used to control the
accuracy of numerical computations.

For the SGN model of freely propagating long waves (the outer region D� in terms
of the present study), the balance of total energy was obtained in [36] in the presence
of moving bottom and without requiring the flow irrotationality. Another important re-
quirement we impose on conservation laws is that they be consistent with the base model
(Eul in our case). The consistency property for conservation laws can be stated as follows:
the conserved density of the approximate model can be obtained from the correspond-
ing density of the base model by applying the same approximation, which was used
to derive the simplified model. The consistency of Eq. (2.37) was demonstrated in [36].
Namely, the energy E of the SGN model can be obtained from the total energy of the full
Euler equations by applying the depth-averaging and truncation operations to the full
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energy of the 3D flow. To give a negative example, we can mention the classical Boussi-
nesq equations [77]. During long time it was believed that they do not admit any energy
conservation law. However, recently a total energy conservation law for the classical
Boussinesq system was found in [26, Section §2.1]. Unfortunately, the conserved energy
is not consistent with the base model Eul.

The goal of this section is to derive the total energy balance equation (2.50) in the inner
domain D�, which corresponds to the fluid layer contained between two solid moving
surfaces corresponding to the wave tank and floating object bottoms. The motion of
these surfaces is prescribed. A consistent energy balance law can be obtained by depth-
averaging and simplifying the corresponding balance of the total energy to the full Euler
equations, written in the domain under the immersed body Bptq. It is also possible to de-
rive the same energy balance equation by computing a judicious differential consequence
of the SGN model (2.42), (2.43). In this case two methods give the same§ result. In this
section we detail the latter derivation only.

First of all, we multiply¶ Eq. (2.43) by the function u and we use the following obvious
identities:

u pu ∇qu�
1
2

u ∇pu uq, u ∇h�Dh�ht , u ∇d�Dd�dt.

As a result, after some simple computations we obtain the following differential conse-
quence:

D

�

ρ
|u|2

2

	

�

1
Q
∇ p

℘uq�
�℘

Q
∇ u�

p̌�

Q
Dh�

p̂�

Q
Dd

�

loooooooooooooooomoooooooooooooooon

pÆq

��

p̌�ht� p̂�dt

Q
. (2.52)

Then, we transform the expression pÆq using Formulae (2.45), (2.46) along with identity
Dd�DQ�Dh:

pÆq�

�

p̌��
1
2

ρgQ�ρ

�

Q2

6
R1�

Q

2
R2


�

∇ u

�

p̌�

Q
Dh�

�

p̌�

Q
�ρg�ρ

�

Q

2
R1�R2


�

pDQ�Dhq.

By using an equivalent form of the mass conservation equation (2.42)

∇ u��
DQ

Q
, (2.53)

§Normally, this claim has to be demonstrated. However, for the sake of manuscript compactness, we provide
only one derivation and we beg the reader to trust us.
¶The multiplication here is understood in the sense of the standard scalar product in E

2.
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we obtain the following relations:

p̌�∇ u�
p̌�

Q
Dh�

p̌�

Q
pDQ�Dhq�0,

�

1
2

ρgQ∇ u�ρgpDQ�Dhq��ρgD
�

Q�2h

2

	

.

Consequently, we obtain

pÆq��ρgD
�

Q�2h

2

	

�ρ

�

Q2

6
R1�

Q

2
R2




∇ u

�ρ

�

Q

2
R1�R2




pDQ�Dhq.

By using now the definitions of R1,2 along with the equivalent form of the mass conser-
vation equation (2.53), we obtain three additional relations:

Q2

6
R1∇ u�

Q

2
R1DQ��D

�

Q2

6
p∇ uq2

	

,

Q

2
R2∇ u�R2DQ�

Q

2
R1Dh��D

�

Q

2
p∇ uqDh

	

,

R2Dh�D

�

pDhq2

2

	

.

Using these relations, Eq. (2.52) becomes

ρD

�

|u|2

2
�

Q2

6
p∇ uq2�

Q

2
p∇ uqDh�

pDhq2

2
�g

Q�2h

2




�

∇ p

℘uq

Q
��

p̌�ht� p̂�dt

Q
. (2.54)

After introducing the total energy as

E

ρ

def
:�

|u|2

2
�

Q2

6

�

∇ u
�2
�

Q

2
p∇ uqDh�

pDhq2

2
�g

Q�2h

2
,

Eq. (2.54) can be rewritten in a more compact form:

Et�u ∇E �
∇ p

℘uq

Q
��

p̌�ht� p̂�dt

Q
.

Finally, if we multiply the last equation by Q, the mass conservation equation (2.42) by E

and sum up the results, we obtain the total energy balance equation (2.50). This equation
describes the evolution of the total energy in the inner domain D�. The change in the
total energy E is due to the motion of the immersed body Bptq and, eventually, of the
wave tank bottom. If these two surfaces are fixed, then Eq. (2.50) becomes a conservation
law.
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2.4 Potential vorticity in the inner domain

First of all, we would like to mention that even if the base model (Pot) is exactly irrota-
tional, the shallow water equations SV provide a rotational approximation to an irrota-
tional flow. Here we remind the Definition (2.78) of the horizontal vorticity ̟:

̟ :ñ
Bu2

Bx1
�

Bu1

Bx2
,

where u� pu1,u2q. The notion of the potential vorticity
̟

H
is very important for the de-

scription of long wave motions in the ocean and in the atmosphere [85]. It is well-known
that in dispersionless equations SV

� the potential vorticity is preserved along the fluid
particle trajectories [23]:

D̄

�̟

H

	

� 0̆.

These results are known for the free propagation of long waves, corresponding to the
outer domain D� in our study. That is why we used the total water depth variable H

and, stricto sensu, one has to use the corresponding horizontal depth-averaged velocity
field ū in the Definition (2.78) of ̟. The goal of this section is to show the derivation of
Eq. (2.79) for SGN

� model in the inner domain D�, since it is used as one of the main
building blocks of our numerical solver [53].

2.4.1 Vector analysis on the plane

To simplify our task of derivation, we shall use a restricted version of the vector analysis
on a plane R

2. Here we provide the main operators definitions and identities whose
proofs are left to the reader.

Let a,b :R2
ÝÑR

2 be two smooth vector fields with components a�pa1,a2q, b�pb1,b2q.
We introduce also two operators, which return scalars in contrast to the 3D case:

∇^

^

^a
def
:�
Ba2

Bx1
�

Ba1

Bx2
,

a^^^b
def
:� a1 �b2�a2 �b1.

Using these operators, we can write the following simple identities:

̟�∇^

^

^u, ̟t�∇^

^

^ut,

∇^

^

^

�

pu ∇qu
�

�̟∇ u�u ∇̟
(2.53)
� �̟

DQ

Q
�u ∇̟. (2.55)

Let us take also two smooth scalar fields defined on the plane f ,g :R2
ÝÑR. Then, it



G. Khakimzyanov and D. Dutykh / Commun. Comput. Phys., x (20xx), pp. 1-58 29

is not difficult to check that the following identities hold

∇^

^

^∇ f � 0̆, ∇ f^^^∇ f � 0̆, ∇^

^

^p f∇gq�∇ f^^^∇g, (2.56)

∇ f^^^∇pDgq�D
�

∇ f^^^∇g
�

�∇pD f q^^^∇g�p∇ f^^^∇gq∇ u, (2.57)

∇ f^^^∇pDgq�QD

�

∇ f^^^∇g

Q

	

�∇pD f q^^^∇g. (2.58)

Identity (2.58) follows directly from (2.57) if one substitutes ∇ u in accordance with
Eq. (2.53).

2.4.2 Derivation

In the derivation of Eq. (2.63) we start from the momentum balance equation (2.43) in
the inner domain D�. First, we rewrite Eq. (2.43) by expressing pressure traces p̌� and p̂�

through the depth-integrated pressure ℘ according to Formulae (2.45) and (2.46):

(2.43)ùut�pu ∇qu�
1

ρQ

�

Q∇

�℘

Q

	

�

℘

Q
∇Q




�

1
ρQ

�

℘

Q
�ρg

Q

2
�ρ

�

Q2

6
R1�

Q

2
R2


�

∇h�
1

ρQ

�

℘

Q
�ρg

Q

2
�ρ

�

Q2

3
R1�

Q

2
R2


�

∇d.

By noticing that ∇d�∇pQ�hq, the last equation can be simplified as follows:

ut�pu ∇qu�∇

�

℘

ρQ




�

g

2
∇ph�dq�

�

Q

6
R1�

R2

2




∇h�

�

Q

3
R1�

R2

2




∇pQ�hq.

If we apply the operator ∇^^^ to the last equation and if we use identities (2.55) and (2.56),
we obtain:

̟t�̟
DQ

Q
�u ∇̟��∇^

^

^

�

Q

6
R1∇h




�∇^

^

^

�

Q

3
R1∇pQ�hq




�∇^

^

^

�

Q

2
∇pQ�2hq




.

By using again Eq. (2.56), we transform it into a more compact equation:

QD

�

̟

Q




�∇

�

Q

6
R1




^

^

^∇h�∇

�

Q

3
R1




^

^

^∇pQ�hq�∇

�

R2

2




^

^

^∇pQ�2hq� 0̆. (2.59)

To go further, we shall rewrite the acceleration R1:

R1 :ñDp∇ uq�p∇ uq2
(2.53)
� Dp∇ uq�p∇ uq

DQ

Q

�

QDp∇ uq�p∇ uqDQ

Q
�

DpQ∇ uq

Q
.
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Then, by using Identities (2.56) - (2.58), we obtain new ones:

∇

�

Q

6
R1




^

^

^∇h�
Q

6
D

�

∇pQ∇ uq^^^∇h

Q




�

1
6
∇pDQq^^^∇pDhq,

∇

�

Q

3
R1




^

^

^∇pQ�hq�
Q

3
D

�

∇pQ∇ uq^^^∇pQ�hq

Q




�

1
3
∇pDQq^^^∇pDQ�Dhq,

∇

�

R2

2




^

^

^∇pQ�2hq��
Q

2
D

�

∇pQ�2hq^^^∇pDhq

Q




�

1
2
∇pDQq^^^∇pDhq.

Consequently, Eq. (2.59) can be recast in the following form:

D

�

̟

Q
�

∇pQ∇ uq^^^∇h

6Q
�

∇pQ∇ uq^^^∇pQ�hq

3Q
�

∇pQ�2hq^^^∇pDhq

2Q

�

� 0̆,

or, after a simplification:

D

�

̟

Q
�

Q∇Q^^^∇p∇ uq

3Q
�

∇pQ∇ uq^^^∇h

2Q
�

∇pQ�2hq^^^∇pDhq

2Q
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

p❀q

�

� 0̆. (2.60)

From the last equation one can see that the SGN
� model does not transport ̟

Q
, but some-

thing more complex p❀q, which is contained in square brackets in Eq. (2.60). By following
the same steps and neglecting extra terms, one can easily derive the following result for
the SV

� model:

D

�

̟

Q




� 0̆. (2.61)

Let us decrypt the physical sense of the quantity p❀q. We shall do it in the case of a 3D
potential flow Pot, since in this case the horizontal components of the velocity u|D� can be
reconstructed to the optimal asymptotic order Opµ4

q using Formula (2.47). Let us compute
the asymptotic representation for the third component̟3 of the vorticity vector:

̟3 :ñ∇^

^

^u|D�

(2.47)
|ù ̟�∇

�

Q

2
�h




^

^

^∇Dh

�∇

�

�

Q

2
�y�h

	

∇ u




^

^

^∇h

�

�

Q

3
∇Q�py�hq∇h




^

^

^∇p∇ uq.

For two last terms on the right hand side, the following identities can be verified:

∇

�

�

Q

2
�y�h

	

∇ u




^

^

^∇h�∇

�

Q∇ u

2




^

^

^∇h�py�hq∇p∇ uq^^^∇h,
�

Q

3
∇Q�py�hq∇h




^

^

^∇p∇ uq�
Q

3
∇Q^^^∇p∇ uq�py�hq∇p∇ uq^^^∇h.
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Consequently, we have

̟3 |ù̟�
Q∇Q^^^∇p∇ uq

3
�

∇pQ∇ uq^^^∇h

2
�

∇pQ�2hq^^^∇pDhq

2
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

def
�: �δ̟

. (2.62)

The last equation establishes an asymptotic connection between̟ and ̟3. Thus, the ex-
pression p❀q coincides with the quantity ̟3

Q
. Thus, Eq. (2.60) can be recast in the following

compact form:

D

�

̟3

Q




� 0̆, (2.63)

which elucidates the potential vorticity transport in SGN
� equations. The form of

Eq. (2.61) coincides identically with Eq. (2.63). However, the content is different. Namely,
the quantity ̟3 approximates much better the horizontal vorticity of the 3D flow, which
vanishes in the limit when we approach by successive approximations the base model
Pot.

Eq. (2.63) can be re-written in a more Eulerian fashion:
�

̟3

Q




t

�u ∇

�

̟3

Q




� 0̆.

By using the mass conservation equation (2.42), we can recast it in the conservative form:

p̟3qt�∇ p̟3uq� 0̆. (2.64)

The last form is more suitable for the discretization using conservative methods such as
finite volumes [28, 31, 54].

Eq. (2.64) can be rewritten in terms of the variable ̟ using Relation (2.62):

̟t�∇ p̟uq�̥, (2.65)

with ̥
def
:��

 

�δ̟t�∇ p

�δ̟uq
(

, where �δ̟ was defined above, but we repeat its definition
here for the sake of reader convenience:

�δ̟ :ñ
Q∇Q^^^∇p∇ uq

3
�

∇pQ∇ uq^^^∇h

2
�

∇pQ�2hq^^^∇pDhq

2
.

In contrast with the appearance, the last expression contains only first order derivatives
of the velocity u. Indeed, it can be simplified using Eq. (2.53) as follows:

�δ̟�
1
6

!

∇h^^^∇
�

Dpd�2hq
�

�∇d^^^∇
�

Dph�2dq
�

)

.

From the last equation it is clear that in the case of even, but possibly moving, bottoms, i.e.

hpx,tq�hptq and dpx,tq�dptq, the correction �δ̟� 0̆ vanishes. Thus, in this case, Eq. (2.65)
becomes particularly simple:

̟t�∇ p̟uq� 0̆.

This completes our derivation and discussion of Eq. (2.63).



32 G. Khakimzyanov and D. Dutykh / Commun. Comput. Phys., x (20xx), pp. 1-58

2.5 Dispersionless equations

In this section we detail the SV model equations. They can be obtained in a straightfor-
ward manner from the SGN model by erasing acceleration terms R1,2ø 0̆ in the inner
domain D�, and R̄1,2ø 0̆ in the outer domain D�.

2.5.1 Outer domain

In the outer domain D� the Nonlinear Shallow Water (or Saint-Venant) SV equations
have the standard form (2.28), (2.29) with the following hydrostatic expressions for the
depth-integrated P and bottom p̌� pressures:

P
def
:�ρg

H2

2
, p̌�

def
:�ρgH. (2.66)

The last definitions are readily obtained from Eqs. (2.30), (2.31) by applying the transfor-
mation R̄1,2ø0̆. The SV model is usually written in the conservative form directly, since
it is known to develop weak solutions in finite time [59]:

Ht�∇ pHūq� 0̆, (2.67)

pHūqt�∇

�

Hūbū�
P

ρ
I

	

�

p̌�∇h

ρ
. (2.68)

This form turns out to be very beneficial for the computation of weak solutions [27, 32].
It is interesting to note that the energy balance equation (2.37) is true for SV model (2.67),
(2.68) as well. However, the definition of energy E has to be simplified accordingly:

E

ρ

def
:�

|ū|2

2
�g

H�2h

2
.

For an alternative definition of the wave energy in view of applications to tsunami wave
energy estimation we refer to [29].

The initial conditions for SV model (2.67), (2.68) are posed in the same way as for SGN.
The impermeability boundary condition (2.39) for SGN on Γ

d along with Condition (2.40)
are transposed to SV as well. On the interior boundary Γ

� the conditions on the normal
derivative Bη

Bn remain precisely the same as for the SGN model regardless whether the
boundary is curvilinear or polygonal. Moreover, on the boundary Γ

� we have to impose
also the compatibility (or gluing) conditions.

2.5.2 Inner domain

Under the immersed body Bptq the SV equations are not different in the form from SGN

equations (2.42), (2.43) written in D�. However, the pressure-related variables are greatly
simplified due to the hydrostaticity assumption:

p̌��
℘

Q
�ρg

Q

2
, p̂��

℘

Q
�ρg

Q

2
. (2.69)
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Thus, the SV model in the inner domain reads as:

Qt�∇
�

Qu
�

� 0̆, (2.70)

pQuqt�∇

�

Qubu�
℘

ρ
I

	

�

p̌�∇h� p̂�∇d

ρ
. (2.71)

The energy balance equation (2.50) holds as well in D�, provided that we redefine the
energy E as

E

ρ

def
:�

|u|2

2
�g

Q�2h

2
.

In the next section, we discuss some mathematical properties of SV equations (2.67),
(2.68).

2.5.3 Analogy with gas dynamics

Let us consider in this section the isentropic compressible Euler system of gas dynamics in
2D. As its name suggests, it is obtained as a simplification of the full compressible Euler
equations by assuming the entropy to be constant [4]. The state of the gas is described
by two functions ρ :R2

�R
�

0 ÝÑR
� and v :R2

�R
�

0 ÝÑR
2, which represent the local fluid

density and the velocity field correspondingly. The system of isentropic Euler equations
then reads:

ρt�∇ pρvq�0, (2.72)

pρvqt�∇ pρvbv�ppρqIq�0. (2.73)

The last two equations have to be supplemented by initial conditions in order to obtain a
well-defined Cauchy problem:

ρpx,0q�ρ0pxq, vpx,0q�v0pxq.

The pressure p is a function of the density ρ, which is called the barotropic equation of state,
determined from constitutive thermodynamic relations. We assume that the function
p :R�

ÝÑR
� satisfies the condition

p1pρq
def
:�

d p

dρ
¡ 0, �ρ ¡ 0,

under which the isentropic Euler system (2.72), (2.73) is hyperbolic [59]. Usually, it is
assumed that p9ργ with constant γ¥1. Obviously, this choice is not unique.

Remark 2.3. It is not difficult to see that the SV model belongs to the class of isentropic
Euler systems (2.72), (2.73) if we replace Høρ, ūøv and we take the quadratic pressure
law with γ�2 defined in the first half of Eq. (2.66). In order to remove the source term
in the right-hand side of Eq. (2.68), it is enough to assume the bottom to be even, i.e.
h�const.
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It is also well-known that hyperbolic systems of conservation laws develop disconti-
nuities in finite time even if we start from smooth initial data [59]. In water wave theory
they are known as hydraulic jumps (or undular bores||) [93]. This phenomenon is known
as the gradient catastrophe or breakdown of classical solutions. This obstacle was overcome by
introducing the so-called weak solutions. Unfortunately, weak solutions fail to be unique.
The help comes from Physics, namely from the second law of Thermodynamics. One
can stipulate that admissible solutions satisfy some additional entropy inequalities. The
quest for well-posedness theory of the Cauchy problem for hyperbolic conservation laws
is more than one century old. Unfortunately, it was shown recently in [14] that entropy
conditions do not single out unique weak solutions in 2D even under very strong as-
sumptions on the initial data pρ0,v0qPW1,8

pR
2
q (here |8|�ℵ0) [16]:

Theorem 2.1. There are Lipschitz continuous initial data pρ0,v0q for which there are infinitely
many bounded admissible solutions pρ,vq to System (2.72), (2.73) on R

2
�R

�

0 with infρ¡ 0.
These solutions are locally Lipschitz on a finite interval on which they all coincide with the unique
classical solution.

The solutions described in the last theorem were called non-standard solutions in [15].
To the best of our knowledge, the question of more efficient selection criteria for weak
solutions is still an open problem. In the light of the last result we can conclude that
the SV model in 2D is not well-posed in the sense of Hadamard, since the requirement
of solution uniqueness is not fulfilled. However, the full water wave problem is well-
posed (see e.g. [96]). Our recommendation is to use in practice the SGN model, which
can be seen as a dispersive regularization of SV equations [6,7,18]. For the mathematical
justification of the SGN model we refer to [60, 68].

2.6 Modified weakly nonlinear weakly dispersive equations

Above we presented two mathematical models for the fluid flow in the outer domain:

SVùñSGNùñ��� ,

where we neglected completely the dispersive effects by following the direction oppo-
site to arrows. However, a more accurate description of the hierarchy of mathematical
models, at least in the outer domain* D�, would consist of the following scheme:

SV
�

ùñBouss
�

ùñSGN
�

ùñ��� , (2.74)

where the arrows indicate the increasing level of complexity, but also of model complete-
ness. Without considering Boussinesq-type equations, our work would not be complete
since these equations are being used in practice for studying long wave propagation
across the oceans [21, 65, 66]. They occupy the intermediate place among SV and SGN

}The presence of undulations behind the front requires the inclusion of slight dispersion effects.
�We shall explain below why this hierarchy does not make sense in the inner domain D�.
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models as indicated in (2.74). It is believed that Bouss models, such as well-known clas-
sical Peregrine [77] or Nwogu [75] systems, might be used for tsunami propagation far
from the coasts, where the flow cannot be considered to be dominated by nonlinear ef-
fects solely as in the coastal areas [21]. However, some simplifications is achieved with
respect to SGNmodel since the nonlinear effects in the dispersive terms are neglected [90].
Currently Boussinesq-type models are also used to simulate the wave run-up on the
coasts [26, 31, 84].

Weakly nonlinear models can be obtained using a variational principle [17, 35]. How-
ever, currently a more popular approach seems to be based on double-asymptotic expan-
sions in two small parameters ε and µ2, where [24, 51]

ε : nonlinearity parameter defined as the ratio between the characteristic wave amplitude
to the typical water depth;

µ2 : the shallowness parameter equal to the squared ratio between a typical water depth
to the characteristic wavelength.

The so-called Boussinesq regime† assumes that

ε�Opµ2
q (2.75)

and the simplification is achieved by neglecting all terms of the order Opµ2
q. By applying

this simplification to dispersive terms ∇P

ρH , p̌�∇h
ρH in Eq. (2.29), we can obtain the corre-

sponding Boussinesq-type system. However, if we proceed in this naive and direct way,
we shall loose some important physical properties of the SGN model. In particular, the
Galilean invariance‡ can be lost as long as some conservation laws such as the total en-
ergy conservation. To give an example, the classical Peregrine system [77] is not Galilean
invariant. However, this situation can be corrected a posteriori by adding some peculiar
higher order terms (in the asymptotic sense) to recover this lost property. The examples of
such invariantization process can be found in [25], where an invariant Peregrine system
can be found as well.

In this section we demonstrate how a weakly nonlinear model can be derived in mul-
tiple spatial dimensions and over uneven bottoms so that the Galilean invariance and
energy conservation properties be preserved. To achieve these goals, the standard sim-
plification technique has to be modified accordingly.

Let us rewrite the pressure-related terms (2.30), (2.31) in the following completely
equivalent way, where we just separate the hydrostatic and non-hydrostatic parts and

:Sometimes the Boussinesq regime is equivalently characterized through the Stokes-Ursell number St [94],
which has to be of order one, i.e.

St
def
:�

ε

µ2 �Op1q.

;We, together with many other authors, consider this property of capital importance for any physically
sound model in classical (i.e. non-relativistic, non-quantum) physics [91].
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we introduce new variables:

P�ρg
H2

2
�ρHQ,

p̌��ρgH�ρHq̌,

where Q and q̌ read

Q�
H

3
D̄pH∇ ūq�

H

2
D̄

2
h,

q̌�
1
2
D̄pH∇ ūq�D̄

2
h.

We substituted also the expressions§ (2.32) for R̄1,2 into the definitions of Q and q̌. In
contrast to the standard simplification approach, we apply the Boussinesq approximation
(2.75) only in Q and q̌:

Qø
h

3
D̄ph∇ ūq�

h

2
D̄

2
h,

q̌ø
1
2
D̄ph∇ ūq�D̄

2
h.

Thus, to summarize, the pressure terms in the Bouss model should be taken as

P�ρg
H2

2
�ρH

�

h

3
D̄ph∇ ūq�

h

2
D̄

2
h

�

, (2.76)

p̌��ρgH�ρH

�

1
2
D̄ph∇ ūq�D̄

2
h

�

. (2.77)

It is remarkable that the general shape of governing equations (2.28), (2.29) in Bouss and
SGNmodels coincides. The difference consists in the content of the pressure terms P and
p̌, which are defined in (2.76), (2.77). We would like to underline the fact that Bouss model
proposed in this study (and also earlier in [36]) is different from the standard weakly non-
linear Boussinesq-type equations. Namely, the dispersive terms of Bouss model are linear
in H (as the standard ones do as well), but nonlinear in ū (in contrast to standard equa-
tions). This is needed to keep important structural properties of the SGN model such as

§It is more convenient to use an alternative form of the expression (2.32) for R̄1. As a second ingredient, it is
based on an equivalent form of the mass conservation equation (2.28):

∇ ū��
D̄H

H
.

Hence, R̄1 can be rewritten as

R̄1�
D̄pH∇ ūq

H
.



G. Khakimzyanov and D. Dutykh / Commun. Comput. Phys., x (20xx), pp. 1-58 37

the Galilean invariance¶ and energy conservation. These advantages are strong enough,
in our humble opinion, to keep some degree of nonlinearity in dispersive terms. For this
reason, we cannot call stricto sensu the Bouss model to be weakly nonlinear. However, we
shall continue to do it to distinguish from fully nonlinear and weakly dispersive model
SGN. Another advantage of the Bouss model is that it inherits also the same conservative
formulation given in Eq. (2.33) (with the only difference that the pressure terms have to
be taken from Definitions (2.76) and (2.77)). This allows to transpose all standard numer-
ical technology based on the finite volume method already developed for SV equations
(see e.g. [3, 30–32]).

2.6.1 Energy conservation in weakly nonlinear weakly dispersive equations

The reduced Bouss model has another major advantage – it conserves the total energy,
in contrast to most other standard Boussinesq-type equations. The energy conservation
equation (2.37) shape is preserved as well. However, the expression of the total energy E

has to be modified accordingly:

E

ρ

def
:�

|ū|2

2
�

h2

6

�

∇ ū
�2
�

h

2
p∇ ūqD̄h�

pD̄hq2

2
�g

H�2h

2
.

The idea behind the derivation of the energy conservation equation in the Bouss model
is slightly different from the SGN derivation sketched in Section 2.3.3. Consequently, we
sketch briefly here the derivation.

First of all, we multiply|| Eq. (2.29) by ū and, by taking into account the identity

ū pū ∇qū� ū ∇
� |ū |2

2

�

, we obtain

D̄

� | ū|2

2

	

�

1
ρH

∇ pP ūq�
P

ρH
∇ ū�

p̌�

ρH
D̄h

looooooooooomooooooooooon

p♠q

��

p̌�

ρH
ht.

The last two terms p♠q in the left hand side can be greatly simplified by taking into ac-
count Definitions (2.76), (2.77):

p♠q�gD̄

�

H�2h

2




�D̄

�

h2

6

�

∇ ū
�2



�D̄

�

h

2
p∇ ūqD̄h




�D̄

�

pD̄hq2

2




�D̄

�

E

ρ
�

|ū|2

2




.

Thus, for the Bouss model the energy balance can be written as:

Et�ū ∇E �
∇ pP ūq

H
��

p̌�

H
ht.

¶The Galilean invariance of the Bouss models follows from the observation that expressions (2.76) and (2.77)
contain only complete (or material) derivatives of the velocity variable ū, which is an invariant quantity in
contrast to the standard partial derivative ūt.
}The multiplication is understood here in the sense of the standard scalar product in the Euclidean space E

2.
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As the final step of the derivation, it is not difficult to transform the last equation into the
conservative form given in (2.37).

Remark 2.4. In this section we proposed a weakly nonlinear and weakly dispersive
model Bouss in the outer domain D�. All along the simplifications we exploited the
Boussinesq assumption that the wave amplitude is a small parameter of the same order
of smallness as the frequency dispersion parameter (see Assumption (2.75)). In the inner
domain the analogue of H is the function Q, which measures the local fluid layer height
between the solid (ocean) bottom and the solid body Bptq. This function Q is prescribed
(i.e. makes part of problem data). Thus, we cannot really make any assumptions on its
magnitude. Henceforth, in our study the Bouss model is not considered in the inner
domain D�.

2.7 On the structure of SGN equations in the inner domain

In order to construct efficient solvers (and even to analyze mathematically) the modu-
lar structure of the governing equations should be understood. This point of view is
exploited extensively in various operator-splitting-type approaches, see e.g. [3, 56]. We
claim that this regard on mathematical models turns out to be useful even outside the
broad framework of splitting methods [43]. This philosophy was successfully applied
recently to the numerical simulation of nonlinear dispersive wave propagation on glob-
ally flat [51,54] and globally spherical [50,52] geometries. Namely, instead of tackling the
dispersive equations directly, at every time step we solve two simpler sub-problems: the
hyperbolic system of balance laws and one scalar elliptic equation. In the present work
we follow the same philosophy in the outer domain D�. In this section we make a similar
discussion of the SGN system properties in the inner domain D�. This information will
be used later in the construction of the numerical algorithm [53].

As we already mentioned, the SGN model (2.42), (2.43) in the inner domain D� is dif-
ferent from the SGN model (2.28), (2.29) in the outer domain D� in the following respect:

In the outer domain D� the unknown functions are H and ū, while in the inner
domain D� we seek to determine ℘ and u.

This apparently little change implies important differences in properties of two systems
that we can denote by SGN

� and SGN
� correspondingly to underline this difference. To

give an example, Eq. (2.42) is not of evolutionary type, since it does not contain the deriva-
tives of unknown functions℘ and u with respect to time t. Moreover, Eq. (2.42) is linear in
contrast to Eq. (2.28), which is its counterpart in the SGN

� realm. However, the most im-
portant difference is that the momentum balance equation (2.43) does not contain mixed
derivatives of the velocity u of the third order, as it is the case in Eq. (2.29). To see it, we
can rewrite Eq. (2.43) in the following way:

ut�pu ∇qu�
1

ρQ
∇℘

�

℘

ρQ2∇Q�

QR1

6
∇ph�2dq�

g�R2

2
∇ph�dq,
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where we expressed the pressure traces p̌� and p̂� through ℘. Now, by Definitions (2.45)
and of quantities R1,2 it can be easily seen that the last equation contains second order
mixed spatial derivative of u at most.

However, there are even more differences. Let us consider a very simple situation
where the solid bottom h� h̆0 and the object bottom d� d̆0 are even and fixed. In this
limiting situation the SGN

� system becomes

∇ u� 0̆,

ut�pu ∇qu�
1

ρph0�d0q
∇℘

� 0̆.

One can easily recognize the system of 2D incompressible Euler equations governing the
flow of an ideal fluid [67], which has a mixed elliptic-hyperbolic type.

All these facts indicate that en efficient modular view on SGN
� should be different

from SGN
� [53]. Our approach consists in introducing a new variable ̟ :D�

�R
�

0 ÝÑR,
which plays the rôle of the horizontal vorticity in incompressible flows [67]:

̟
def
:�
Bu2

Bx1
�

Bu1

Bx2
, (2.78)

where u�pu1,u2q. The main advantage of introducing the vorticity function ̟ is that it
allows to eliminate pressure** ℘ from the governing equation (2.43). Thus, we change the
set of unknown functions p℘,uqø p̟,uq. As a result, we have a natural splitting of our
problem. To determine the velocity function u, we have a system of non-homogeneous
Cauchy-Riemann-type system (2.42), (2.78). The evolution of vorticity ̟ is given by the
following hyperbolic equation derived in Section 2.4:

̟t�∇ p̟uq�̥. (2.79)

These two simple problems are solved at each time step of our numerical algorithm. The
advantage of the proposed splitting becomes particularly clear in a special case when the
fluid layer height under the body Bptq is steady, i.e. Qt� 0̆. Then, the mass conservation
equation (2.42)ù∇ pQuq�0̆. Taking into account Eq. (2.78), one can derive the following
elliptic Poisson equation to determine the stream function ψ :D�

�R
2
0ÝÑR [88]:

�

ψx1

Q




x1

�

�

ψx2

Q




x2

��̟.

The velocity field u can be easily reconstructed from the stream function ψ:

Qu1�ψx2 , Qu2��ψx1 .

��If one needs to reconstruct the depth-integrated pressure℘, it can be achieving using a marching pressure
scheme [83].
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Consequently, in the case Qt� 0̆ the splitting approach yields a scalar elliptic equation
instead of a non-homogeneous Cauchy-Riemann-type system to determine the stream
function ψ. The computational technology to solve these standard PDEs is well under-
stood nowadays [34]. On the other hand, the introduction of new variables requires the
re-formulation of boundary conditions. We shall explain this peculiar point in the second
part of our study [53].

3 Compatibility conditions

On the common boundary Γ
� :ñ cl

�

D�

�

�

cl
�

D�

�

of inner D� and outer D� domains the
fluid layer heights H and Q, velocities ū and u, and depth-integrated pressures P and ℘
are, in general, discontinuous. However, the jumps of these quantities across Γ

� cannot
assume arbitrary values. They are subject to some additional physical constraints, which
are called compatibility (or transmission) conditions. They play in a certain sense the rôle
of celebrated Rankine-Hugoniot conditions in gas dynamics [44, 82]. Below, we shall
obtain these conditions in SGN and SV models. We would like to underline the fact that
Eul and Pot models do not require any compatibility conditions since they treat the fluid
domain Ωptq in its entirety.

As a general guiding principle, we quote here a recent study devoted to similar prob-
lems in gas dynamics [20]:

[ . . . ] The method of interface coupling allows us to represent the evolution of such
flows, where different models are separated by fixed interfaces. First, coupling condi-
tions are specified at the interface to exchange information between the systems. The
definition of transmission conditions generally results from physical consideration,
e.g., the conservation or the continuity of given variables. Then, the transmission
conditions are represented at the discrete level. The study of interface coupling for
nonlinear hyperbolic systems has received attention for several years. [ . . . ]

From previous studies, coupling conditions [ . . . ] can be classified in three categories:
flux coupling, state coupling and coupling with measure source term. The flux cou-
pling method is a conservative approach which ensures the continuity of the physi-
cal flux through the coupling interface. Conversely, the state coupling method is a
nonconservative approach which imposes (at least weakly) the continuity property of
either the (conservative) variables or a nonlinear transformation of them (say, primi-
tive variables). Finally, the coupling condition can be modelled thanks to a bounded
vector-valued Dirac measure concentrated at the coupling interface. The coupling
condition is then prescribed from the definition of the mass of the measure. [ . . . ]

In this study we consider both the state and flux couplings.
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3.1 Fully nonlinear weakly dispersive SGN case

As we already mentioned, the unknowns in the SGN model are the depth-averaged ve-
locities ū, u; the total water depth H in D� and the depth-integrated pressure ℘ in D�.
Consequently, we need to derive three relations in order to be able to reconstruct these
three quantities on one side of Γ

� by having their values on the other side. In this section
we shall obtain only two such relations, which will be sufficient for the numerical imple-
mentation of our algorithm. In order to obtain the 3rd relation, one has to make additional

assumptions on the 3D flow behaviour in the vicinity of B‖Bptq
def
:�Γ

�

�

�

d|Γ�px,tq,�8
�

�R
3

(here |8|�ℵ1). For a more general treatment in 3D space we refer to Appendix A.

3.1.1 Pressure condition

First we derive the compatibility condition for the pressure variables. We can assume
that the pressure in the 3D flow is at least continuous everywhere in the fluid domain,

i.e. p P C0
�

Ωptq
�

. In particular, it is continuous on the vertical surface B‖Ωptq
def
:�Γ

�

�

�

�h|Γ�px,tq,d|Γ�px,tq
�

�cl
�

Ωptq
�

. Thus, we can write it mathematically:

lim
xÑx‖
xPD�

ppx,y,�q� lim
xÑx‖
xPD�

ppx,y,�q, px‖,yqPB‖Ωptq. (3.1)

We underline the fact that the above equality has to hold �y P
�

�h|Γ�px,tq,d|Γ�px,tq
�

. By
substituting in continuity condition (3.1) the asymptotic representations (2.34), (2.44) of
the 3D pressure field p on both sides of the boundary Γ

�, we obtain that (3.1) is equivalent
to the following three conditions �xPΓ

� and �tPR�

0 :

p̌��ρgH�ρ

�

H2

2
R̄1�HR̄2




,

R̄1�R1, R̄2�R2.

Then, from Eq. (2.45) and from the last three conditions it follows that

℘
�ρgHQ�ρQ

�

H2

2
R̄1�HR̄2




�ρg
Q2

2
�ρ

�

Q3

6
R1�

Q2

2
R2




�ρQ

�

H�
Q

2




�pg�R̄2q�ρQ

�

H2

2
�

Q2

6




R̄1.

This gives us the first compatibility condition for the depth-integrated pressure, which
relates in a highly nonlinear way quantities from inner and outer domains:

℘
�ρQ

�

H�
Q

2




�

�

g�R̄2

	

�ρQ

�

H2

2
�

Q2

6




R̄1, xPΓ
�, �tPR�

0 . (3.2)
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3.1.2 Flux condition

The second compatibility condition can be obtained by making a natural assumption that
the 3D (horizontal) velocity field u across the surface B‖Ωptq is continuous. Let n denote
the projection of a unit normal n3 to B‖Ωptq on horizontal directions, i.e. n�πxpn3q. Then,
from Definitions (2.27) and (2.48) of the depth-averaged horizontal velocities ū and u

correspondingly, we obtain the following sequence of equalities, which hold on Γ
�:

Hpū nq
(2.27)
�

» η

�h
pu nqp ,y,�qdy

(2.13)
�

» d

�h
pu nqp ,y,�qdy

(2.48)
� Qpu nq.

By identifying two ends of the last sequence of equalities, we obtain the second compati-
bility condition:

ρHpū nq�ρQpu nq, xPΓ
�, �tPR�

0 , (3.3)

where we multiplied both sides by fluid density ρ to have the equality of fluid fluxes
(in terms of physical units) through the surface B‖Ωptq. We would like to underline that
compatibility condition (3.3) ensures the mass conservation in domain Dd.

3.2 Nonlinear shallow water SV case

The compatibility conditions derived in Section 3.1 can be directly transposed to the case
of nonlinear shallow water equations SV. The pressure-related condition (3.2) simplifies
greatly in the SV realm:

℘
�ρgQ

�

H�
Q

2




, xPΓ
�, �tPR�

0 .

The flux condition (3.3) is transposed directly to SV case without any modifications.

4 Discussion

In the present work we considered the problem of wave interaction with a floating, but
fixed partially immersed solid body. The main conclusions and perspectives of this study
are outlined below.

4.1 Conclusions

The present manuscript is the first part of a series of studies devoted to the problem of
wave/partially immersed body interaction. In this part we considered the hierarchy of
mathematical models, which can be used to model this situation:

SVùñSGNùñPotùñEulùñNS.
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The models considered in this study are conservative (inviscid), since the dissipative ef-
fects can be added later if needed. A special emphasis was made on long wave models
SGN and SV, since their reduced computational complexity is very attractive for various
practical applications. The derivation of these models is well understood, especially for
free wave propagation. The case of the moving rigid lid is covered in our study. More-
over, we showed that there are important differences between these equations written
in the free space (projects on the outer domain D�) and under the floating body Bptq
(projects on the inner domain D�). While the free wave propagation in relatively well
understood nowadays [51, 54], the main peculiarity in this study is the surgery of so-
lutions at the boundary Γ

�

� clpD�

q

�

clpD�

q between two domains in order to obtain a
globally valid physical solution in Dd. This is achieved using specifically derived com-
patibility conditions on Γ

�. They allow us to ensure, in particular, the global mass and/or
energy conservation, depending on the choice of imposed conditions. Moreover, we de-
rive also for SV

� and SGN
� models in the inner domain the local balance equations for

the momentum and total energy, which become conservation laws if the solid bound-
aries are fixed (i.e. do not move in time). The structure of these equations in the inner
domain is discussed and we showed that a successful splitting strategy for the numer-
ical and theoretical analyses is fundamentally different in the inner and outer domains.
This understanding will be used in the following Part II [53] to construct efficient numer-
ical solvers for fully nonlinear weakly dispersive wave propagation in the presence of a
partially immersed floating body.

4.2 Perspectives

The modelling approaches described in the present study can be further extended in
two main directions. First of all, the continuous models Eul, Pot, SGN and SV we de-
scribed above have to be properly discretized (in space and in time) and implemented
in numerical codes. In the following part of our study [53] we shall take care of SV and
SGN models. First numerical results will be presented in 2D. However, one may want to
solve 3D problems as well. The peculiarity in 3D wave/body interaction is that a wave
can overcome the obstacle on the lateral sides as well, while in 2D there are only two
possibilities: reflection and underflow. Thus, the 3D case will represent a much richer hy-
drodynamic behaviour. In the future, we would like to study and shed some light on
these phenomena.

Another possible generalization will consist in allowing the obstacle to move under
the wave loading. We remind that the obstacle was assumed to be fixed in the present
study. Of course, it was a simplifying assumption, which has to be released in future
investigations. This generalization will propose new simulation tools for ship and naval
hydrodynamics.
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Nomenclature

ø : the left hand side is substituted by the right hand side

ù : the right hand side is substituted by the left hand side

� : equal identically

� : isomorphism relation

def
:� : the left hand side is defined by the right hand side

def
�: : the right hand side is defined by the left hand side

:ñ : equal by definition

|ù : left hand side is asymptotically equal to . . . (after truncation of higher order terms)

|ù: right hand side is asymptotically equal to . . . (after truncation of higher order terms)

9 : the left hand side is proportional to the right hand side

b : tensor product

I : identity square matrix in MatnpRq

N : the set of natural numbers, i.e.
 

1,2,���
(

(a monoid with respect to multiplication and
a semi-group with respect to addition operations)

N0 : the set of natural numbers with zero, i.e.
 

0,1,2,���
(

(a semi-group with respect to
multiplication and a monoid with respect to addition operations)

n¤ : for any nPN denotes a finite set of natural numbers n¤
def
:�

 

1,2,��� ,n�1,n
(
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n  : for any nPN denotes a finite set of natural numbers n 
def
:�

 

1,2,��� ,n�2,n�1
(

n¤0 : for any nPN denotes a finite set of natural numbers n¤0
def
:�

 

0,1,2,��� ,n�1,n
(

n 0 : for any nPN denotes a finite set of natural numbers n 0
def
:�

 

0,1,2,��� ,n�2,n�1
(

R : the set of all real numbers

R
d : the standard vector space of d�tuples of real numbers

E
d : the standard (real) Euclidean space, i.e. Rd supplied with the standard scalar prod-

uct

R
� : the set of all positive real numbers (a group with respect to the multiplication and

a semi-group with respect to the addition operation)

R
� : the set of all negative real numbers (a semi-group with respect to addition opera-

tion)

R
�

0 : the set of all non-negative real numbers (a monoid with respect to the addition
operation)

8 : ℵ0 or ℵ1 depending on the context

r̆ : for any fixed rPR denotes a function, which takes a constant value r, i.e. r̆ :Rd
ÝÑR

such that �xPRd: r̆pxq�r, d¥1

r̆ : for any fixed r PR denotes a vector-function, which takes a constant vector value

pr,r,��� ,rq
loooomoooon

ntimes

, i.e. r̆ :Rd
ÝÑR

n such that �xPRd: r̆pxq�pr,r,��� ,rq
loooomoooon

ntimes

, d¥1 and n¡1

x : horizontal components of Cartesian coordinates in R
3

|�| : depending on the argument p�q: it is the absolute value of a real number or Euclidean
norm of a vector

y : vertical component of Cartesian coordinates in R
3

Bα : is the partial derivative with respect to xα, i.e. Bαp�q
def
:�
Bp�q

Bxα
, αP2¤

D̄ : total (material) derivative operator in 2D based on velocity ū

D : total (material) derivative operator in 2D based on velocity u

Ω : fluid domain, Ω�R
3
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: a parallelepiped, �R
3

�pαβq : a piecewise smooth oriented curve (or curvilinear segment) connecting points
α and β with the natural orientation from α to β

ðpαβq : a piecewise smooth oriented curve (or curvilinear segment) connecting points
α and β with the inverse orientation from β to α

Òpα,βq : a vector in R
3 directed vertically upwards going from point αPR3 to point βPR3,

necessarily we have πxpαq�πxpβq

öpαβ���δq : a simple, piecewise smooth, closed oriented curve connecting points α, β, ���,
δ and returning to α with this natural orientation

Dpαβ���δq : a plain bounded domain surrounded by the closed contour öpαβ���δq

Cp
pΩq : space of continuously differentiable functions up to order pPN0 defined on do-

main Ω. If p�0 then we have the space of just continuous functions on Ω

Ω : canonical projection of a 3D domain Ω�R
3 on horizontal directions Oxy. Thus,

Ω�R
2

D : a domain in R
2

clpDq : closure of a domain D in R
2

f |D : restriction of a map f to the sub-domain D

Γ : boundary of a domain in R
2, i.e. Γ

def
:�BD

B‖Ω : lateral†† boundary of a domain Ω�R
3

n : horizontal components of a unit exterior normal to a boundary in a point

κ : curvature of a 2D boundary in a point

8κ : signed curvature of a 2D boundary in a point

ρ : constant fluid density

g : constant gravity acceleration

η : free surface excursion

H : total water depth, i.e. H
def
:�h�η (SGN, Bouss and SV models)

::By lateral boundary we understand the part of the surface of a cylindrical domain, which is parallel to the
central axis. In our study this axis coincides with Oy.
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h : a function, which describes the bottom of the fluid domain Ω

B : partially immersed floating body, B�R
3

d : a function, which describes the bottom of the immersed body B

Q : fluid layer height under the body B, i.e. Q
def
:�d�h

u : horizontal velocity field in the 3D flow (Eul model)

v : vertical velocity in the 3D flow (Eul model)

p : pressure field in the 3D flow (Eul and Pot models)

φ : velocity potential function (Pot model)

ū : depth-averaged horizontal velocity in the outer domain D�, ū� ūpx,tq (SGN, Bouss
and SV models)

u : depth-averaged horizontal velocity in the inner domain D�, d�dpx,tq (SGN and SV

models)

P : depth-integrated fluid pressure in the outer domain D� (SGN and Bouss models)

℘ : depth-integrated fluid pressure in the inner domain D� (SGN model)

p̌� : fluid pressure at the bottom in the inner domain D� (SGN� and SV
� models)

p̌� : fluid pressure at the bottom in the outer domain D� (SGN�, Bouss� and SV
� models)

p̂� : fluid pressure at the bottom of the object Bptq (SGN� and SV
� models)

R̄1,2 : acceleration due to uneven bottom effects in the outer domain D� (SGN� model)

R1,2 : acceleration due to uneven bottom effects in the inner domain D� (SGN� model)

Qn : the mass flux along a certain direction n, which defined in the outer domain as

Qn
def
:�ρHpū nq. In the inner domain HøQ and ūøu

E : the total energy in various models (SV, Bouss, SGN, Pot, Eul). In some situations we
employ the superscript E � and E � to differentiate the energy contained in the inner
and outer domains respectively (SV and SGN models)

ε : the nonlinearity parameter equal to the ratio between a typical wave amplitude to the
characteristic water depth (SGN, Bouss and SV models)

µ : the shallowness parameter equal to the ratio between a typical water depth to the
characteristic wavelength (SGN, Bouss and SV models)



48 G. Khakimzyanov and D. Dutykh / Commun. Comput. Phys., x (20xx), pp. 1-58

A An alternative derivation of compatibility conditions

In this Appendix we provide a more detailed, but also somehow alternative, derivation
of the compatibility conditions given in Section 3. Let us have a critical view on the
derivation presented above. First of all, in the derivation of the flux condition (3.3) we
did not use the reconstruction formulae (2.35), (2.47) for the horizontal velocity field, only
the Definitions (2.27) and (2.48) of the depth-averaged velocities ū and u correspondingly
and the impermeability condition (2.13) on the body lateral surface B‖Bptq. This is rather
a strong point since reconstruction formulae (2.35), (2.47) are valid for irrotational flows
only, while the compatibility conditions are being derived in the general case. On the
other hand, in the derivation of the pressure continuity condition (3.2) we used the recon-
struction formulae (2.34), (2.44) for the fluid pressure p. The validity of these reconstruc-
tions near the boundary Γ

� may be questioned*. Thus, in this Appendix we re-consider
our previous derivation. Our goal is to avoid using any kind of reconstruction formulae,
which are questionable in the region of interest. Moreover, we shall include in our consid-
eration the energy balance equations on both sides of the boundary Γ

�, which are formal
differential consequences of the mass and momentum balances for sufficiently smooth
solutions. However, the situation might be different for abrupt changes. Thus, some au-
thors† favour the usage of the energy conservation law in such situations in lieu of the
momentum conservation [1, 5]. We follow this philosophy in great lines as well.

A.1 Nonlinear dispersive case

We already mentioned in Section 2.7 that the unknown functions in SGN models are:

Outer domain D�: two components of the velocity vector ū and the water height H,

Inner domain D�: two components of the velocity vector u and the depth-integrated
pressure ℘.

Thus, we need to have three compatibility conditions in 3D and two in 2D correspond-
ingly. These conditions will allow us to deduce the flow parameters on the other side of
Γ
� from knowing them on one side.

We shall work with conservative forms of equations only. Let us remind them here.
We take advantage of this occasion to rewrite the governing equations in the tensorial
form:

�We provide here one reason for this: the long wave character of the flow might be perturbed in the vicinity
of such abrupt changes in the flow geometry. Thus, the reconstructed flow might be well different from the
corresponding 3D solution to Eul model, for example.
:These authors considered the Riemann problem [57] for nonlinear shallow water equations SV in the pres-
ence of a discontinuity in the bathymetry. Our situation is similar in the sense that the discontinuity is
located at the free surface (in contrast to the bottom) and caused by the presence of a floating body Bptq.
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Mass conservation:

Ht�BpHūq� 0̆, xPD�,

Qt�B

�

Qu

�

� 0̆, xPD�,

Momentum balance:

pρHūıqt�B

�

Hūıū�δ
ı
P

	

� p̌�hxı , xPD�,

pρQuıqt�B

�

Quıu�δ
ı

℘
	

� p̌�hxı� p̂�dxı , xPD�,

Energy balance:

pHE qt�B

�

�

HE �P
�

ū

	

��p̌�ht, xPD�,

pQE qt�B

�

pQE �℘qu

�

��p̌�ht� p̂�dt, xPD�,

where ıP2¤ and δı
 is the Kronecker δ�function. In equations above we used the Einstein

summation convention over the repeated index (here P2¤) and Bp�q
def
:�
Bp�q

Bx
is the usual

partial derivative with respect to x. One can see that all equations listed above can be
written symbolically as

qt�Bf�s, xPDd, P2¤, (A.1)

for some accordingly chosen functions q, f and s defined on the corresponding domain
Dd :ñD�

�

D�. However, all these functions are discontinuous across Γ
�. Thus, Eq. (A.1)

should be understood in the integral form only.
Consider a Cartesian reference frame Oxt. To make explicit this integral form, let us

choose first two arbitrary instances of time 0¤ t1¤ t2 and a small portion γ��Γ
� together

with a neighbourhood Dpαβγδq delimited by the contour ö pαβγδq such that the lines
� pαβq�D� andð pγδq�D� lie on two sides of γ�. The curve γ� along with its contour
ö pαβγδq do not change in time. However, to make difference among these geometric
objects at different time layers, we shall denote them with the corresponding number of
primes at superscripts, i.e. in space-time stricto sensu

öpα1β1γ1δ1q�öpα2β2γ2δ2q,

even if they encode the same geometrical object in space. We refer to Fig. 5 for an illustra-
tion. As a result, in the space Oxt we obtain a curvilinear parallelepiped

pα1β1γ1δ1α2β2γ2δ2q.

Its upper and lower faces are parallel to the coordinate plane Ox, while the lateral bound-
ary, that we denote by B‖ , consists of a cylindrical surface formed by ö pα1β1γ1δ1q as a
generatrix and Òpα1,α2q as a directrix:

B‖
def
:�Dpα1α2δ2δ1q

¤

Dpα1β1β2α2q
¤

Dpβ1β2γ2γ1q
¤

Dpγ1γ2δ2δ1q.
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Since the directrix of this cylinder is parallel to the axis Ot, the exterior unitary normal n3

to B‖ will have the form n3�pn1,n2,0qPR3 and the vector n�pn1,n2qPR
2 is independent

of time. However, in general n�npxq.
We integrate Eq. (A.1) over the domain pα1β1γ1δ1α2β2γ2δ2q to obtain the following

integral relation:
„

Dpα2β2γ2δ2q

qp ,t2qdx�

„

Dpα1β1γ1δ1q

qp ,t1qdx�

¿

B‖

fp ,τqnp qdσ�

½

sdxdt, (A.2)

where P2¤, t1¤τ¤ t2, dσ is the surface element and we omitted the lists of points (α, β,
γ, δ) for the sake of notation compactness. The integral relation obtained above makes
sense for bounded and continuous almost everywhere functions. Thus, they might admit
a discontinuity along γ�. Now, we can tend from each side of γ� the points αÑǫ

�

, δÑǫ
�

,
βÑ ζ

�

and γÑ ζ
�

. In the limit only two surface integrals over the faces Dpα1β1β2α2q

Figure 5: A 
urvilinear parallelepiped 
onstru
ted around an element γ�� Γ
�

to illustrate the derivation of


ompatibility 
onditions.
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and Dpδ1γ1γ2δ2q will remain in integral relation (A.2). These two faces will becomes
two opposite sides (with opposite exterior normals n3) of the surface Dpǫ1ζ1ǫ2ζ2q. Let
us assume the unitary vector n3 points into the inner domain D�. Then, in the limit the
integral relation (A.2) will become

„

Dpǫ1 ζ 1 ζ2 ǫ2q

f� p ,τqn p qdσ �

„

Dpǫ1 ζ 1 ζ2 ǫ2q

f� p ,τqn p qdσ � 0̆, ùñ

„

Dpǫ1ζ1ζ2ǫ2q

!

f� p ,τqnp q�f� p ,τqnp q

)

looooooooooooooooomooooooooooooooooon

p�q

dσ� 0̆, P2¤, (A.3)

where
lim
xÑǫ

xPD�

fpx,�q
def
�: f� pǫ,�q, lim

xÑǫ

xPD�

fpx,�q
def
�: f� pǫ,�q, P2¤.

Since the portion γ� � Γ
� is arbitrary along with the time instances t1 ¤ t2, the integral

identity (A.3) can be fulfilled only if the expression p�q vanishes identically‡ in all points
xPΓ

� and for all times, i.e.

f� px,tq�npxq� f� px,tq�npxq, �xPΓ
�, �tPR�

0 .

The just obtained general result can be applied to the mass, momentum and energy bal-
ance laws mentioned hereinabove to obtain the following set of compatibility conditions,
which hold �xPΓ

� and �tPR�

0 :

ρQpu nq�ρHpū nq
def
�:Qn,

ρQpu nqu�℘n�ρHpū nq�Pn,

ρQpu nq
�

E
�

�

℘

Q

	

�ρHpū nq
�

E
�

�

P

H

	

,

(A.4)

(A.5)

(A.6)

where the quantity Qn is the mass flux through the boundary Γ
� in the normal direction

n. Using the notion of the mass flux Qn, we can greatly simplify two other families of
compatibility conditions:

Qnu�℘n�Qnū�Pn,

E
�

�

℘

Q
�E

�

�

P

H
.

(A.7)

(A.8)

;The proper justification of this step is given by the Localization theorem, which requires only the continuity
of the expression under the integral sign.
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We can derive a useful consequence of Condition (A.7) if we multiply§ it from both sides
by a vector τK n tangential to Γ

�:

u τ� ū τ, �xPΓ
�, �tPR�

0 . (A.9)

Any subset¶ of relations obtained in this section can be used as compatibility/transmis-
sion conditions to solve the wave/floating body interaction problem.

We would like to underline that Condition (A.4) ensures the global mass conservation
and we highly recommend its usage. Then, Conditions (A.4), (A.5) together with bound-
ary condition (2.13) ensures the global conservation of the momentum in Dd :ñD�

�

D�,
while the combination (A.4), (A.6)

�

(2.13) ensures the global conservation of the total
energy in Dd. As we already mentioned, some authors privilege the energy conservation
over momentum [1,5]. There exists also another school of thinking||, which consists in in-
cluding the hydrodynamic turbulence into consideration. This phenomenon destroys the
energy conservation principle, due to the inherent dissipation at Kolmogorov scales [38].
Thus, the pressure continuity principle described in Section 3.1.1 and the resulting condi-
tion (3.2) is preferred, since it does not yield the energy conservation. We cannot deny no
one’s preference. Our goal in this work is to describe various existing possibilities, which
can be used in modeling practice.

§The multiplication here is understood in the sense of the standard scalar product in E
2.

¶The number of compatibility conditions to be employed depends on the dimension of the problem under
consideration (2D or 3D) and, in likelihood, on the employed numerical algorithm. The choice of employed
conditions depends mostly on modelling convictions and taste of the investigator.
}First of all, the presence of energy dissipation in wave/floating obstacle interaction process due to various
mechanisms was clearly demonstrated recently in [71]. However, the problem of wave interaction with
submerged obstacles is much better studied. We can quote here another study devoted to this problem [61]:

[ . . . ] Energy dissipation has a profound role during the solitary wave interaction with the obstacle. As
mentioned earlier, the main energy losses come from the vortex generation around the corners of the
obstacle and wave breaking above the obstacle, which are much more significant than the bottom friction
in this problem. While the vortex shedding takes place for all cases, wave breaking only occurs for the
obstacle with large height. [ . . . ]

The influence of various dissipation mechanisms was studied in [92]:

[ . . . ] The wave reflection and transmission in the presence of a rigid or flexible fluid-filled breakwa-
ter structure would occur with the loss of some portion of the incident wave energy by the following
processes: losses due to wave breaking over the structure, loses due to turbulence induced by flow sep-
aration over and near the structure, and internal losses due to turbulence of the fluid contained inside
the structure as well as nonelastic deformations of the structure itself. [ . . . ]

Henceforth, the presence of turbulent effects is widely acknowledged. In the framework presented in our
study, we can take into account at the level of compatibility conditions, since not all choices conserve the
energy.
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A.2 Nonlinear shallow water SV case

In the case of hydrostatic equations SV, the compatibility conditions (A.4) and (A.9) are
preserved without any modifications. The Conditions (A.5), (A.6) and (A.8) can be fur-
ther simplified by neglecting all non-hydrostatic terms in the pressure terms using For-
mulae (2.66) and (2.69). To give an example of a dynamic compatibility condition for the
SV model, we can combine (A.8) with (A.9) to obtain the following scalar condition:

Q2
n

2ρQ2 �ρg
Q

2
�

℘

Q
�

Q2
n

2ρH2 �ρgH, �xPΓ
�, �tPR�

0 .

This completes our discussion on the so-called compatibility / transmission or even glu-
ing conditions. We shall return to this point for the practical implementation in the fol-
lowing Part II [53].
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