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Abstract

Finite Element Exterior Calculus (FEEC) was developed by Arnold, Falk, Winther and

others over the last decade to exploit the observation that mixed variational problems can

be posed on a Hilbert complex, and Galerkin-type mixed methods can then be obtained by

solving finite-dimensional subcomplex problems. Chen, Holst, and Xu (Math. Comp. 78

(2009) 35–53) established convergence and optimality of an adaptive mixed finite element

method using Raviart–Thomas or Brezzi–Douglas–Marini elements for Poisson’s equation

on contractible domains in R2, which can be viewed as a boundary problem on the de

Rham complex. Recently Demlow and Hirani (Found. Math. Comput. 14 (2014) 1337–

1371) developed fundamental tools for a posteriori analysis on the de Rham complex.

In this paper, we use tools in FEEC to construct convergence and complexity results

on domains with general topology and spatial dimension. In particular, we construct a

reliable and efficient error estimator and a sharper quasi-orthogonality result using a novel

technique. Without marking for data oscillation, our adaptive method is a contraction

with respect to a total error incorporating the error estimator and data oscillation.

Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.

Key words: Finite element exterior calculus, Adaptive finite element methods, A posteriori

error estimates, Convergence, Quasi-optimality.

1. Introduction

An idea that has had a major influence on the development of numerical methods for PDE

applications is that of mixed finite elements, whose early success in areas such as computational

electromagnetics was later found to have surprising connections with the calculus of exterior

differential forms, including de Rham cohomology and Hodge theory [9, 19, 30, 31]. A core

idea underlying these developments is the Helmholtz-Hodge orthogonal decomposition of an

arbitrary vector field f ∈ (L2(Ω))3 into curl-free, divergence-free, and harmonic functions:

f = ∇p+∇× q + h,

where p ∈ H1
0 (Ω), q ∈ H(curl,Ω), and h is harmonic (divergence- and curl-free). The mixed

formulation is explicitly computing the decomposition for h = 0, and finite element methods

based on mixed formulations exploit this. There is a connection between this decomposition
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and de Rham cohomology; the space of harmonic forms is isomorphic to the first de Rham

cohomology of the domain Ω, with the number of holes in Ω giving the first Betti number,

and creating obstacles to well-posed formulations of elliptic problems. A natural question is

then: What is an appropriate mathematical framework for understanding this abstractly, that

will allow for a methodical construction of “good” finite element methods for these types of

problems? The answer turns out to be the theory of Hilbert Complexes. Hilbert complexes

were originally studied in [11] as a way to generalize certain properties of elliptic complexes,

particularly the Hodge decomposition and other aspects of Hodge theory. The Finite Element

Exterior Calculus (FEEC) [3, 4] was developed to exploit this abstraction. A key insight was

that from a functional-analytic point of view, a mixed variational problem can be posed on a

Hilbert complex: a differential complex of Hilbert spaces, in the sense of [11]. Galerkin-type

mixed methods are then obtained by solving the variational problem on a finite-dimensional

subcomplex. Stability and consistency of the resulting method, often shown using complex

and case-specific arguments, are reduced by the framework to simply establishing existence

of operators with certain properties that connect the Hilbert complex with its subcomplex,

essentially giving a “recipe” for the development of provably well-behaved methods.

Due to the pioneering work of Babuška and Rheinboldt [5], adaptive finite element methods

(AFEM) based on a posteriori error estimators have become standard tools in solving PDE

problems arising in science and engineering (cf. [1, 34,38]). A standard adaptive algorithm has

the general iterative structure:

Solve −→ Estimate −→ Mark −→ Refine, (1.1)

where Solve computes the discrete solution uℓ in a subspace Xℓ ⊂ X; Estimate computes

certain error estimators based on uℓ, which are reliable and efficient in the sense that they

are good approximation of the true error u − uℓ in the energy norm; Mark applies certain

marking strategies based on the estimators; and finally, Refine divides each marked element and

completes the mesh to obtain a new partition, and subsequently an enriched subspace Xℓ+1.

The fundamental problem with the adaptive procedure (1.1) is guaranteeing convergence of

the solution sequence. The first convergence result for (1.1) was obtained by Babuška and

Vogelius [6] for linear elliptic problems in one space dimension. The multi-dimensional case was

open until Dörfler [18] proved convergence of (1.1) for Poisson’s equation by using the so called

Dörfler marking, under the assumption that the initial mesh was fine enough to resolve the

influence of data oscillation. This result was improved by Morin, Nochetto, and Siebert [28],

in which the convergence was proved without conditions on the initial mesh, but requiring

the so-called interior node property, together with an additional marking step driven by data

oscillation. It was shown by Binev, Dahmen and DeVore [8] for the first time that AFEM

for Poisson’s equation in the plane has optimal computational complexity by using a special

coarsening step. This result was improved by Stevenson [36] by showing the optimal complexity

in general spatial dimension without a coarsening step. These error reduction and optimal

complexity results were improved in several aspects in [12]. In their analysis, the artificial

assumptions of interior node and extra marking due to data oscillation were removed, and the

convergence result is applicable to general linear elliptic equations. The main ingredients of

this new convergence analysis are the global upper bound on the error given by the a posteriori

estimator, orthogonality (or possibly only quasi-orthogonality) of the underlying bilinear form

arising from the linear problem, and a type of error indicator reduction produced by each step

of AFEM. In another direction, Morin, Siebert, and Veeser [29] gave a plain convergence result
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of conforming AFEMs for a widge range of linear problems without using Dörfler makring.

We refer to [32] for a recent survey of convergence analysis of AFEM for linear elliptic PDE

problems which gives an overview of all of these results through 2012. See also [23] or an

overview of various extensions to nonlinear problems.

Of particular relevance here is the 2009 article of Chen, Holst, and Xu [13], where conver-

gence and optimality of an adaptive mixed finite element method (AMFEM) using Raviart–

Thomas (RT) [33] or Brezzi–Douglas–Marini (BDM) [10] elements for Poisson’s equation on

simply connected polygons in R2 was established. The main difficulty for convergence analysis

of AMFEM is the lack of minimization principle, and thus the failure of orthogonality. A main

contribution of [13] is a quasi-orthogonality result on the error ∥σ − σh∥. The proof is based

on the fact that the error is orthogonal to the divergence free subspace, while the part of the

error that is not divergence free was bounded by the data oscillation using a discrete stability

result. We also mention that Becker and Mao [7] developed a convergent AMFEM with optimal

comlexity using the lowest-order RT finite element in R2. They used a multigrid inexact solver

as the SOLVE module, which is another direction of interest. Recently, [25] extended the anal-

ysis of adaptive mixed methods for Poisson’s equation in [13] to R3 and [24] provided a unified

analysis of many adaptive mixed methods in R2 and R3. [7,13,24,25] all used discrete Helmholtz

decomposition on contractible domains that ignores harmonic components (harmonic forms in

FEEC).

In this paper, we generalize the results in [2,13] by analyzing the error ∥σ−σh∥ in the FEEC

framework, which allows us to extend the a posteriori upper bound in [2] and convergence and

complexity results in [13] on contractible domains in R2 to domains of arbitrary topology and

spatial dimension. By saying “FEEC framework”, we identify the classical mixed formulation

and mixed method for Poisson’s equation as (2.8) posed on the de Rham complex and (2.9) on

the discrete de Rham complex, respectively. In this way, tools for dealing with harmonic forms in

[3,4] and deriving a posteriori error indicators in [17] can be applied . In FEEC terminology, the

method considered in [13] are equivalent to those for solving the Hodge Laplacian problem when

k = n = 2. All of our results apply to the case k = n for arbitrary n ≥ 2 and domains which

are not necessarily contractible. Even in the case k = n = 2, our quasi-orthogonality result is

sharper than [13] in the sense that it involves a local data oscillation. The quasi-orthogonality

Theorem 4.1 is motivated by Becker and Mao’s result [7] in R2. The key ingredient of the proof

is Lemma 4.1, a discrete approximation result in the standard L2-norm, while [24, 25] used a

carefully designed mesh-dependent norm and a discrete inf-sup condition to achieve their quasi-

orthogonality in R3. With the sharper quasi-orthogonality, we are able to prove contraction of

Algorithm AMFEM by defining the total error ∥σ − σh∥2 + ρη2Th
(σh, Th) + ζ osc2Th

(f, Th), see
Theorem 5.2. Comparing to [13] using a separate marking driven by data oscillation, AMFEM

uses a single marking step based on the estimator ηTh
(σh, T ).

While it is possible to restate the improvement in this paper in the classical context of mixed

methods as [7,13,24,25], the framework of FEEC has its own advantages. By using the language

of differential forms, our analysis is unified and straightforward, e.g., topology-independent and

dimension-independent. As mentioned above, classical a posteriori error analysis of mixed

methods implicitly assumed that Ω has no “holes” in R2 and R3 and ignored harmonic part in

the Helmholtz decomposition, while the harmonic form encoding the topological information is

built in the Hodge decomposition and handled by the gap theorem 3.1 in FEEC. In addition,

residual-based error indicators of AMFEM make use of the tangential trace and adjoint of curl

(cf. [2,25]), whose definitions and behaviors are quite different in R2 and R3 and unclear in Rn
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with n ≥ 4. In FEEC, the tangential trace is unified as tr ⋆ and the adjoint of curl is unified as

the coderivative δ in any dimension, see the error indicator (3.1).

This paper is a revised version of the unpublished preprint [20] in 2013 whose goal is to

shed some light on a posteriori error analysis, convergence and optimality of adaptive methods

on the de Rham complex. In the revised version, we give a completely new proof of Theorem

4.1, a refined quasi-orthogonality result, while [20] follows the quasi-orthogonality proof in [13].

Second, the contraction analysis of AMFEM is novel by using the aforementioned improved

quasi-orthogonality and total error. In addition, several inaccuracies in [20] such as proofs of

Corollary 3.1 and quasi-optimality are fixed or removed.

Recently, there are several results on convergence and optimality of AMFEM in FEEC.

Demlow [16] developed a convergent AFEM with optimal complexity for computing the space

of harmonic forms. In [14], Chen and Wu developed a convergent AMFEM for solving the Hodge

Laplacian with index 1 ≤ k ≤ n− 1 with respect to the error ∥d(σ − σh)∥2 + ∥d(u− uh)∥2 on

contractible domains. The second author [27] developed two AMFEMs for the Hodge Laplacian

with index 1 ≤ k ≤ n on Lipschitz domains with general topology. When k = n, his results

can control and reduce the energy error ∥σ − σh∥HΛn−1 while AMFEM is dealing with the L2

error ∥σ − σh∥. Assuming sufficient regularity, ∥σ − σh∥ = O(hr+2) is of higher order than

∥σ − σh∥HΛn−1 = O(hr+1) when using the generalized BDM pair (2.11). In addition, the

quasi-orthogonality result Theorem 4.1 is sharper than [27] and the proof is quite different.

The remainder of the paper is organized as follows. In Section 2 we introduce the notational

and technical tools in FEEC needed for the paper. In Section 3 we present an error indicator

with global reliability and local efficiency. In Section 4, we construct the quasi-orthogonality

result. The adaptive algorithm AMFEM is then presented in Section 5, and we prove both

convergence and optimality.

2. Preliminaries

In this section we first review abstract Hilbert complexes. We then examine the particular

case of the de Rham complex. We follow closely the notation and the general development of

Arnold, Falk, and Winther in [3, 4]. We also discuss results from Demlow and Hirani in [17].

(See also [21, 22] for a concise summary of Hilbert Complexes in a yet more general setting.)

We then give an overview of the basics of Adaptive Finite Element Methods (AFEM), and the

ingredients we will need to prove convergence and optimality within the FEEC framework.

2.1. Hilbert complexes

We begin with a quick summary of some basic concepts and definitions. A Hilbert complex

(W,d) is a sequence of Hilbert spaces W k equipped with the inner product ⟨·, ·⟩, closed and

densely defined linear operators, dk, which map their domain, V k ⊂ W k to the kernel of dk+1

in W k+1. A Hilbert complex is bounded if each dk is a bounded linear map from W k to W k+1

A Hilbert complex is closed if the range of each dk is closed in W k+1. Given a Hilbert complex

(W,d), the subspaces V k ⊂W k endowed with the graph inner product

⟨u, v⟩V = ⟨u, v⟩+ ⟨dku, dkv⟩,

form a Hilbert complex (V, d) known as the domain complex. By definition dk+1◦ dk = 0, thus

(V, d) is a bounded Hilbert complex. Additionally, (V, d) is closed if (W,d) is closed.
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The range of dk−1 in V k will be represented by Bk, and the null space of dk will be

represented by Zk. Clearly, Bk ⊂ Zk. The elements of Zk orthogonal to Bk are the space of

harmonic forms, represented by Hk. For a closed Hilbert complex we can write the Hodge

decomposition of W k and V k,

W k = Bk ⊕ Hk ⊕ Zk⊥, (2.1)

V k = Bk ⊕ Hk ⊕ Zk⊥V , (2.2)

where ⊥ denotes the orthogonal complement w.r.t. ⟨·, ·⟩ and Zk⊥V := Zk⊥ ∩ V k. We use

PB, PH, PZ⊥ to denote the L2 projections onto Bk,Hk,Zk⊥ ,respectively. Another important

Hilbert complex will be the dual complex (W,d∗), where d∗k : W k → W k−1, is the adjoint

of dk−1. The domain of d∗k will be denoted by V ∗
k . Let Z∗

k denote the null space of d∗k and

B∗
k the range of d∗k+1. For closed Hilbert complexes, an important result will be the Poincaré

inequality,

∥v∥V ≤ cP ∥dkv∥W , v ∈ Zk⊥. (2.3)

In addition, we have the important relation Z⊥
k = B∗

k. The de Rham complex is the practical

complex where general results we show on an abstract Hilbert complex will be applied.

The abstract Hodge Laplacian

Given a Hilbert complex (W,d), the operator L = dd∗ + d∗d, W k → W k will be referred to as

the abstract Hodge Laplacian. For f ∈ W k, the Hodge Laplacian problem can be formulated

as the problem of finding u ∈W k such that

⟨du, dv⟩+ ⟨d∗u, d∗v⟩ = ⟨f, v⟩, v ∈ V k ∩ V ∗
k .

A necessary condition for the solution to exsit is f ⊥ Hk. The above formulation has

undesirable properties from a computational perspective. The finite element spaces V k ∩ V ∗
k

is difficult to construct, and the problem will not be well-posed in the presence of a non-

trivial harmonic space Hk. In order to circumvent these issues, a well-posed (cf. [3, 4]) mixed

formulation of the abstract Hodge Laplacian is introduced as the problem of finding (σ, u, p) ∈
V k−1 × V k × Hk, such that:

⟨σ, τ⟩ − ⟨dτ, u⟩ = 0, ∀τ ∈ V k−1,

⟨dσ, v⟩+ ⟨du, dv⟩+ ⟨p, v⟩ = ⟨f, v⟩, ∀v ∈ V k,

⟨u, q⟩ = 0, ∀q ∈ Hk.

(2.4)

Subcomplexes and approximate solutions to the Hodge Laplacian

In [3,4] a theory of approximate solutions to the Hodge Laplacian problem is developed by using

finite dimensional approximation of Hilbert complexes. Let (W,d) be a Hilbert complex with

domain complex (V, d). An approximating subcomplex is a set of finite dimensional Hilbert

spaces, V k
h ⊂ V k with the property that dkV k

h ⊂ V k+1
h . We identify W k

h with V k
h but endowed

with the norm ⟨·, ·⟩. Following [4], we use Zh,Bh,Hh,B
∗
h with obvious meaning. Since (Vh, d)

is a closed Hilbert complex, V k
h has a corresponding Hodge decomposition:

V k
h = Bk

h ⊕ Hk
h ⊕ Zk⊥

h .
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Using elementary linear algebra, we have Z⊥
h = B∗

h. By this construction, (Vh, d) is an abstract

Hilbert complex with a well-posed Hodge Laplacian problem: Find (σh, uh, ph) ∈ V k−1
h × V k

h ×
Hk

h, such that

⟨σh, τ⟩ − ⟨dτ, uh⟩ = 0, ∀τ ∈ V k−1
h ,

⟨dσh, v⟩+ ⟨duh, dv⟩+ ⟨ph, v⟩ = ⟨f, v⟩, ∀v ∈ V k
h ,

⟨uh, q⟩ = 0, ∀q ∈ Hk
h.

(2.5)

An assumption made in [4] in developing this theory is the existence of a bounded cochain

projection πh : V → Vh, which commutes with the differential operator d.

In [4], an a priori convergence result is developed for the solutions on the approximating

complexes. The result relies on the approximating complex getting sufficiently close to the

original complex in the sense that infv∈V k
h
∥u−v∥V can be assumed sufficiently small for relevant

u ∈ V k. Adaptive methods, on the other hand, gain computational efficiency by limiting the

degrees of freedom used in areas of the domain where it does not significantly impact the quality

of the numerical solution.

2.2. The de Rham complex and approximation properties

The de Rham complex is a cochain complex where the abstract results from the previous

section can be applied in developing practical computational methods. This section reviews

concepts and definitions related to the de Rham complex that will be needed in our development

of an adaptive finite element method. This introduction will be brief and mostly follows the

notation from the more in-depth discussion in [4].

For the remainder of the paper we assume a bounded Lipschitz polyhedral domain, Ω ∈
Rn, n ≥ 2. Let Λk(Ω) be the space of smooth k-forms on Ω, and L2Λk(Ω) be the completion

of Λk(Ω) with respect to the L2 inner-product. For k = n, the space of harmonic forms in

L2Λn(Ω) has no nonzero element, i.e. Hn = {0}, which simplifies the analysis in our case of

interest k = n. However, σ−σh is contained in HΛk−1(Ω), which generally contains a nontrivial

harmonic component. Note that the convergence and optimality results in [13] hold only for

simply connected polygons in R2, therefore Hn−1 = {0} is also true in the case k = n = 2.

The de Rham complex

Let d be the exterior derivative acting as an operator from L2Λk(Ω) to L2Λk+1(Ω). We still use

⟨·, ·⟩ and ⟨·, ·⟩V to denote the L2- and V -inner products respectively on the de Rham complex.

This forms a Hilbert complex (L2Λ(Ω), d), with domain complex (HΛ(Ω), d), where HΛk(Ω) is

the set of elements in L2Λk(Ω) with exterior derivatives in L2Λk+1(Ω). The domain complex

can be described with the following diagram

HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · → HΛn−1(Ω)
d−→ HΛn(Ω) = L2Λn(Ω). (2.6)

It can be shown that the compactness property is satisfied, and therefore the prior results shown

on abstract Hilbert complexes can be applied.

The importance of the adjoint operator is clear by the first equation of the mixed Hodge

Laplacian problem. For ω ∈ Λk(Ω), the coderivative δω ∈ Λk−1(Ω) is the unique form satisfying

⋆δω := (−1)kd ⋆ ω. Let

H̊Λk(Ω) :=
{
ω ∈ HΛk(Ω) : tr ω = 0 on ∂Ω

}
,

H̊∗Λk(Ω) := ⋆H̊Λn−k(Ω),
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where tr denotes the trace opeartor for differential forms. Stokes’ theorem gives a useful version

of integration by parts

⟨dω, µ⟩ = ⟨ω, δµ⟩+
∫
∂Ω

tr ω ∧ tr ⋆ µ, ω ∈ Λk−1(Ω), µ ∈ Λk(Ω). (2.7)

The following result uses the above concepts and is helpful in understanding the mixed Hodge

Laplace problem on the de Rham complex.

Theorem 2.1 (Theorem 4.1 from [4]). Let d be the exterior derivative viewed as an un-

bounded operator from L2Λk−1(Ω) to L2Λk(Ω) with domain HΛk(Ω). Then the adjoint d∗, as

an unbounded operator from L2Λk(Ω) to L2Λk−1(Ω), has H̊∗Λk(Ω) as its domain and coincides

with the operator δ.

Using (2.4) with k = n, du = 0, Hn = {0}, and Theorem 2.1, we obtain the mixed formu-

lation for the Hodge–Laplace equation on the de Rham complex: find (σ, u) ∈ HΛn−1(Ω) ×
HΛn(Ω) such that

⟨σ, τ⟩ − ⟨dτ, u⟩ = 0, ∀τ ∈ HΛn−1(Ω),

⟨dσ, v⟩ = ⟨f, v⟩, ∀v ∈ HΛn(Ω).
(2.8)

By the isomorphisms HΛn−1(Ω) ∼= H(div; Ω), HΛn(Ω) ∼= L2(Ω) (cf. [3]), d is identified as the

divergence operator and (2.8) can be realized as the classical mixed formulation for Poisson’s

equation with homogeneous Dirichlet boundary condition.

We use (V (Th), d) [corresponds to (Vh, d)] to denote a finite dimensional subcomplex of

(HΛ, d) on the mesh Th. Assuming the exsitence of a cochain projection πh, H
n
h = Hn = {0}.

The discrete problem (2.5) with k = n then reduces to find (σh, uh) ∈ V n−1(Th)×V n(Th), such
that

⟨σh, τ⟩ − ⟨dτ, uh⟩ = 0, τ ∈ V n−1(Th),
⟨dσh, v⟩ = ⟨f, v⟩, v ∈ V n(Th).

(2.9)

Let δh be the adjoint of d : V n−1(Th)→ V n(Th), and fTh
be the L2-projection of f onto V n(Th).

(2.9) is equivalent to σh = δhvh, dσh = fTh
. Note that σ ∈ Z⊥

h and σ ∈ Z⊥.

Finite element differential forms

Given a shape regular, conforming simplicial triangulation Th of Ω, we set hT := |T | 1n for an

element T ∈ Th, where |T | is the volume of T . The finite element space V k(Th) ⊂ HΛk(Ω) is a

space of k-forms with piecewise polynomial coefficients. In particular, we assume that

V n−1(Th) = P−
r+1Λ

n−1(Th), V n(Th) = PrΛ
n(Th), (2.10)

or

V n−1(Th) = Pr+1Λ
n−1(Th), V n(Th) = PrΛ

n(Th), (2.11)

for any nonnegative integer r. In fact, PrΛ
k(Th) consists of k-forms in HΛk(Ω) with piecewise

polynomial coefficients of degree r and P−
r Λk(Th) is in a special Koszul complex on Th. Pairs

(2.10) and (2.11) are generalizations of RT and BDM elements respctively in FEEC. For a

detailed discussion on these spaces, see [4].
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Bounded Cochain Projections

Bounded cochain projections and their approximation properties are necessary in the analysis of

both uniform and adaptive FEMs in the FEEC framework. We will use frequently the following

two operators: the smoothed projection πh : L2Λk(Ω)→ V k(Th) from [15], and the commuting

quasi-interpolation Πh : L2Λk(Ω)→ V k(Th) as defined in [17] with ideas similar to [35].

In the remainder of the paper, C will be a generic constant which is dependent only on Ω

and the shape regularity of the underlying mesh . We use ⟨·, ·⟩Ω0 to denote the L2 inner product

restricted to Ω0. ∥ · ∥ will denote the L2Λk(Ω) norm, and when taken on specific elements of

the domain T and ∂T , we write ∥ · ∥T and ∥ · ∥∂T respectively. For all other norms, such as

HΛk(Ω) and H1Λk(Ω), we write ∥ · ∥HΛk(Ω) and ∥ · ∥H1Λk(Ω) respectively.

The next lemma is taken directly from Lemma 6 in [17], and will be a key tool in developing

an upper bound for the error.

Lemma 2.1. Assume 1 ≤ k ≤ n, and ϕ ∈ HΛk−1(Ω) with ∥ϕ∥HΛk−1(Ω) ≤ 1. There exists

φ ∈ H1Λk−1(Ω) such that dφ = dϕ,Πhdϕ = dΠhϕ = dΠhφ, and∑
T∈Th

h−2
T ∥φ−Πhφ∥2T + h−1

T ∥tr(φ−Πhφ)∥2∂T ≤ C.

3. Error Estimator

For T ∈ Th, let JτK denote the jump of τ over an element face. For element faces on ∂Ω we

set JτK = τ . The element error indicator is defined as

η2Th
(σh, T ) = hT ∥Jtr ⋆σhK∥2∂T + h2

T ∥δσh∥2T + h2
T ∥f − fTh

∥2T . (3.1)

For a subsetM⊆ Th, define

η2Th
(σh,M) :=

∑
T∈M

η2Th
(σh, T ),

osc2Th
(f,M) :=

∑
T∈M

h2
T ∥f − fTh

∥2T .

The Hodge decomposition is crucial to proving global reliability of ηTh
. Using σ ∈ Z⊥ and

σh ∈ Z⊥
h , the Hodge decomposition of σ − σh can be written as

σ − σh = PB(σ − σh) + PH(σ − σh) + PZ⊥(σ − σh)

= (σ − PZ⊥σh)− PBσh − PHσh.
(3.2)

Lemmas 3.1, 3.2 and 3.3 will bound each portion of this orthogonal decomposition.

Lemma 3.1.

∥σ − PZ⊥σh∥ ≤ C oscTh
(f, Th).

Proof. Since σ − PZ⊥σh ∈ Zn−1⊥ = B∗
n−1, σ − PZ⊥σh = δv for some v ∈ Dom(δ), where

Dom(δ) = H̊∗Λn(Ω) ∼= H1
0 (Ω) is the domain of δ by Theorem 2.1. Thus

∥σ − PZ⊥σh∥2 = ⟨σ − PZ⊥σh, δv⟩ = ⟨dσ − dσh, v⟩.
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Then by
∑

T∈Th
h−2
T ∥v − vTh

∥2T ≤ C∥δv∥2, we obtain

∥σ − PZ⊥σh∥2 = ⟨f − fTh
, v − vTh

⟩ ≤ C oscTh
(f, Th)∥δv∥.

The proof is complete. �

The next lemma uses the quasi-interpolant Πh described in [17], and also applies integration

by parts in the same standard fashion that [17] used when bounding error measured in the

natural norm, ∥u− uh∥HΛk(Ω) + ∥σ− σh∥HΛk−1(Ω) + ∥p− ph∥. In [17], inf-sup condition of the

bilinear-form was used to separate components of the error, whereas here we simply analyze

the orthogonal decomposition of σ − σh.

Lemma 3.2.

∥PBσh∥ ≤ CηTh
(σh, Th).

Proof. Note that

∥PBσh∥ = ⟨σh, PBσh/∥PBσh∥⟩ = ⟨−σh, dϕ⟩, ϕ ∈ (Zk−2)⊥V .

Since ϕ can then be replaced with φ satisfying the properties of Lemma 2.1, and noting σh ⊥
Bk−1

h ,

∥PBσh∥ = ⟨−σh, d(φ−Πhφ)⟩. (3.3)

The problem is now reduced to a case handled in [17], when they bound a portion of their

η−1 estimator. We follow their ideas to complete to proof. Applying the integration by parts

formula we have

∥PBσh∥ =
∑
T∈Th

−
∫
∂T

tr ⋆σh ∧ tr(φ−Πhφ)− ⟨δσh, φ−Πhφ⟩T .

Noting tr(φ−Πhφ) is single-valued on the element boundaries and Cauchy–Schwarz inequality,

this can be reduced to

∥PBσh∥ ≤ C
∑
T∈Th

∥ tr(φ−Πhφ)∥∂T ∥Jtr ⋆σhK∥∂T + ∥φ−Πhφ∥T ∥δσh∥T

≤ C
∑
T∈Th

(
h

1
2

T ∥Jtr ⋆σhK∥∂T + hT ∥δσh∥T
)

×
(
h
− 1

2

T ∥ tr(φ−Πhφ)∥∂T + h−1
T ∥φ−Πhφ∥T

)
≤ CηTh

(σh, Th)
( ∑
T∈Th

h−1
T ∥ tr(φ−Πhφ)∥2∂T + h−2

T ∥φ−Πhφ∥2T
)1/2

.

The proof is then complete by applying the bounds from Lemma 2.1, and the Poincaré inequality

∥ϕ∥HΛk−1 ≤ C∥dϕ∥ = C. �

To control the harmonic component in the Hodge decomposition, we need to estimate the

gap between Hn−1 and Hn−1
h . To this end, we use equation (28) in [4]:

∥(I − PHk)q∥V ≤ ∥(I − πk
h)PHkq∥V , q ∈ Hk

h. (3.4)

Note that ∥q̃∥ = ∥q̃∥V for any q̃ ∈ Hk or Hk
h. Combining (3.4) with a triangle inequality yields

∥q∥ ≤ (∥(I − πk
h)∥+ 1)∥PHkq∥ ≤ C∥PHkq∥, q ∈ Hk

h. (3.5)
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Theorem 3.1 will be essential in dealing with the harmonic forms in the proof of a continuous

upper-bound. The corollary will be used identically when proving a discrete upper-bound. For

use in our next two results we introduce the gap between subspaces and one of its important

properties. Let A,B be n < ∞ dimensional, closed subspaces of a Hilbert space W . The gap

between A and B is

δ(A,B) = sup
x∈A, ∥x∥=1

∥x− PBx∥.

Then [17], Lemma 2 which takes the original ideas from [26], shows

δ(A,B) = δ(B,A). (3.6)

Theorem 3.1. For 1 ≤ k ≤ n− 1,

δ(Hk,Hk
h) = δ(Hk

h,H
k) ≤ C < 1.

Proof. It is well known that dim(Hk
h) = dim(Hk) = βk, the kth Betti number of the domain

Ω. Then we can apply (3.6) to prove the equality. By (3.5) and the orthogonality of the

L2-projection, we have

δ(Hk
h,H

k) = sup
q∈Hk

h, ∥q∥=1

∥q − PHq∥

= sup
q∈Hk

h, ∥q∥=1

√
1− ∥PHq∥2

≤
√
1− 1

C2
< 1.

The proof is complete. �

Corollary 3.1. Let Th be a conforming refinement of TH . Then

δ(Hk
h,H

k
H) = δ(Hk

H ,Hk
h) ≤ C < 1.

Proof. The proof follows the same logic as Theorem 3.1. The only difference is replacing

(3.4) by

∥(I − PHh
)q∥V ≤ ∥(I − πk

H)PHh
q∥V , q ∈ Hk

H ,

which can be derived by following the proof of (3.4). �

Lemma 3.3.

∥PHσh∥ ≤ CH∥σ − σh∥, CH < 1.

Proof. Using σ ⊥ Zk−1 and σh ⊥ Zk−1
h , we have

∥PHσh∥ = sup
q∈H,∥q∥=1

⟨σh, q − PHh
q⟩

= sup
q∈H,∥q∥=1

⟨σh − σ, q − PHh
q⟩

≤ δ(Hn−1,Hn−1
h )∥σh − σ∥.

Then Lemma 3.3 follows from Theorem 3.1. �

Now we are in a position to prove the continuous upper bound.
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Theorem 3.2 (continuous upper bound). There exists a constant C1, depending only on

the shape regularity of Th, such that

∥σ − σh∥2 ≤ C1η
2
Th
(σh, Th).

Proof. Starting from (3.2), by Lemmas 3.1, 3.2 and 3.3, we have

∥σ − σh∥ ≤ ∥σ − PZ⊥σh∥+ ∥PHσh∥+ ∥PBσh∥

≤ 1

1− CH
(∥σ − PZ⊥σh∥+ ∥PBσh∥)

≤ C1ηTh
(σh, Th).

The proof is complete. �

The efficiency can be proved by the standard bubble function technique in [17].

Theorem 3.3 (lower bound). There exists a constant C2 depending only on the shape regu-

larity of Th, such that

C2η
2
Th
(σh, Th) ≤ ∥σ − σh∥2 + osc2Th

(f, Th).

4. Quasi-orthogonality

The main difficulty for proving convergence of AMFEM is the failure of orthogonality.

In [13], a quasi-orthogonality property is proven using a technical discrete stability result.

In this section, we use a novel technique to prove a sharper quasi-orthogonality result on

⟨σ − σh, σh − σH⟩. The next lemma provides a discrete approximation result.

Lemma 4.1. Let Th be a conforming refinement of TH and PH be the L2 projection onto

P0Λ
n(TH). Then for any T ∈ TH and vh ∈ V n(Th),

∥vh − PHvh∥T ≤ ChT ∥δhvh∥T .

Proof. Let Th|T be the collection of simplices of Th contained in T , namely, the restriction of

Th to T . Let V̊ n−1
h (T ) :=

{
τh ∈ V n−1(Th|T ) : tr τh = 0 on ∂T}, and V n

h (T ) = PrΛ
n(Th|T ) be

two spaces of forms locally defined on T . By the theory of de Rham complexes with boundary

condition ([3] and section 6.2 in [4]), H̊Λn−1(T )
d−→ L2Λn(T )

∫
−→ R and the discrete analogue

V̊ n−1
h (T )

d−→ V n
h (T )

∫
−→ R are both exact. Recall that P0Λ

n(TH) is the space of piecewise

constant n-forms w.r.t. TH and thus
∫
T
(vh − PHvh) = 0. Hence using exactness, there exists

τh ∈ V̊ n−1
h (T ) with dτh = vh−PHvh. Clearly, we can pick τ̃h ∈ Z⊥

T such that dτ̃h = dτh, where

Z⊥
T is the orthogonal complement of the null space of d in V̊ n−1

h (T ). The Poincaré inequality

(2.3) then gives

∥τ̃h∥T ≤ CT ∥dτ̃h∥T = CT ∥vh − PHvh∥T , (4.1)

where the Poincare constant CT = O(hT ) by scaling. By zero extension, τ̃h can be viewed as a

global function in V n−1(Th). It then follows from (2.7), (PHvh)|T is constant, and tr τ̃h = 0 on

∂T that

⟨PHvh, dτ̃h⟩ =
∫
∂T

tr ⋆(PHvh) ∧ tr τ̃h = 0. (4.2)
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Finally using (4.2), suppτ̃h ⊆ T , and (4.1), we have

∥vh − PHvh∥2T = ⟨vh − PHvh, dτ̃h⟩ = ⟨vh, dτ̃h⟩
= ⟨δhvh, τ̃h⟩ ≤ ∥δhvh∥T ∥τ̃h∥T ≤ ChT ∥δhvh∥T ∥vh − PHvh∥T ,

which completes the proof. �
The quasi-orthogonality result is a direct corollary of Lemma 4.1.

Theorem 4.1. Let Th be a refinement of TH and RH be the set of refined elements in TH . For

any ε > 0,

(1− ε)∥σ − σh∥2 ≤ ∥σ − σH∥2 − ∥σh − σH∥2 +
C0

ε
osc2TH

(f,RH).

Proof. By σ ⊥ Zh and σh ⊥ Zh, we have

|⟨σ − σh, σh − σH⟩| = |⟨σ − σh, PZ⊥
h
(σh − σH)⟩|

≤ ∥σ − σh∥∥PZ⊥
h
(σh − σH)∥.

(4.3)

Since PZ⊥
h
(σh − σH) ∈ Z⊥

h = B∗
h, there exists vh ∈ V n(Th) satisfying PZ⊥

h
(σh − σH) = δhvh.

Then using d(σh − σH) = dδhvh and P0Λ
n(Th) ⊆ V n(Th), we have

∥PZ⊥
h
(σh − σH)∥2 = ⟨δhvh, δhvh⟩

= ⟨d(σh − σH), vh⟩
= ⟨fTh

− fTH , vh − PHvh⟩,
= ⟨f − fTH , vh − PHvh⟩,

(4.4)

where PH is given in Lemma 4.1. For T ∈ TH\RH , vh = PHvh on T . Hence combining (4.4),

Cauchy–Schwarz inequality, and Lemma 4.1 yields

∥PZ⊥
h
(σh − σH)∥2 =

∑
T∈RH

⟨f − fTH , vh − PHvh⟩T

≤ oscTH (f,RH)

( ∑
T∈RH

h−2
T ∥vh − PHvh∥2T

) 1
2

≤ C
1
2
0 oscTH

(f,RH)∥δhvh∥.

(4.5)

It then follows from (4.3) and (4.5) that

∥σ − σh∥2 = ∥σ − σH∥2 − ∥σh − σH∥2 − 2⟨σ − σh, σh − σH⟩
≤ ∥σ − σH∥2 − ∥σh − σH∥2 + ε∥σ − σh∥2 + ε−1C0 osc

2
TH

(f,RH).

The proof is complete. �
Comparing to the quasi-orthogonality

(1− ε)∥σ − σh∥2 ≤ ∥σ − σH∥2 − ∥σh − σH∥2 +
C

ε
osc2TH

(f, TH) (4.6)

proved in [13], Theorem 4.1 is sharper because oscTH
(f,RH) ≤ oscTH

(f, TH). This improvement

is crucial to the convergence analysis. Replacing oscTH
(f, TH) by oscTH

(f,RH) is motivated by

the quasi-orthogonality result in [7] for the lowest order RT mixed method on simply connected

polygon in R2. However, our technique is applicable to general domains in Rn and quite different

from [7] as well as [13].
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5. Convergence and Optimality

Given an initial triangulation, T0, the adaptive procedure will generate a nested sequence

of triangulations Tℓ and discrete solutions σℓ and uℓ, by looping through the following steps:

Solve −→ Estimate −→ Mark −→ Refine

Our adaptive mixed finite element method is as follows.

[TN , σN ] = AMFEM(f, T0, θ, tol)
Given an initial mesh T0, a marking parameter 0 < θ < 1, an error tolerance tol > 0. Set

ℓ = 0, ηℓ = tol > 0.

WHILE ηℓ ≥ tol, DO

1. Solve the discrete problem (2.9) on Tℓ to obtain the solution σℓ.

2. For each T ∈ Tℓ, compute ηTℓ
(σℓ, T ) and ηℓ = ηTℓ

(σℓ, Tℓ).

3. Select a subsetMℓ of Tℓ such that ηTℓ
(σℓ,Mℓ) ≥ θηTℓ

(σℓ, Tℓ).

4. Refine Tℓ and necessary neighboring simplices by newest vertex bisection to get a con-

forming Tℓ+1. Set ℓ← ℓ+ 1 and go to Step 1.

END DO

TN = Tℓ, σN = σℓ.

Newest vertex bisection can maintain the shape regularity of {Tℓ}, i.e., Tℓ is shape regular

and the shape regularity depends only on T0. Bounding the number of simplexes generated in

mesh refinements is important in the proof of quasi-optimality. Assuming that T0 satisfies a

matching condition, Stevenson [37] has shown that newest vertex bisection guarantees

#Tℓ ≤ #T0 + C
ℓ−1∑
i=0

#Mi. (5.1)

5.1. Convergence of AMFEM

This subsection is devoted to convergence analysis of AMFEM. The results in this section

follow ideas already in the literature [7, 12, 13], with Theorem 5.2 building on these ideas by

proving reduction in a total error using relationships between data oscillation and reduction of

a second type of total error. The following notation will be used in the proofs and discussion

of this section:
eℓ = ∥σ − σℓ∥2, Eℓ = ∥σℓ+1 − σℓ∥2, ηℓ = η2Tℓ

(σℓ, Tℓ),
oℓ = osc2(f, Tℓ), ôℓ = osc2(f,Rℓ).

where Rℓ is the set of refined elements in Tℓ.

Lemma 5.1.

ηℓ+1 ≤ βηℓ + C3Eℓ, (5.2)

where 0 < β < 1 and C3 > 0 depend only on θ and T0.
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Proof. The proof is similar to Corollary 3.4 in [12]. Since ηℓ involves data oscillation, we

sketch the proof here for clarity. Let ηℓ = η̂ℓ + oℓ, where η̂ℓ = η̂2Tℓ
(σℓ, Tℓ) is the standard

estimator without data oscillation. Given T ∈ Tℓ+1, using a Young’s inequality with parameter

δ∗ > 0, we have

η̂2Tℓ+1
(σℓ+1, T ) ≤ (1 + δ∗)η̂

2
Tℓ+1

(σℓ, T ) + (1 + δ−1
∗ )CT0∥σℓ+1 − σℓ∥2T ,

Summing over T ∈ Tℓ+1 yields

η̂2Tℓ+1
(σℓ+1, Tℓ+1) ≤ (1 + δ∗)η̂

2
Tℓ+1

(σℓ, Tℓ+1) + (1 + δ−1
∗ )CT0∥σℓ+1 − σℓ∥2.

It then follows from oℓ+1 ≤ oℓ that

ηℓ+1 ≤ (1 + δ∗)η
2
Tℓ+1

(σℓ, Tℓ+1) + (1 + δ−1
∗ )CT0Eℓ. (5.3)

For T ∈ Tℓ, we use ωT = {t ∈ Tℓ+1 : t ⊂ T}. If T ∈Mℓ is marked,∑
t∈ωT

η̂2Tℓ+1
(σℓ, t) ≤ 2−

1
n η̂2Tℓ

(σℓ, T ), (5.4)

see Corollary 3.4 in [12]; and ∑
t∈ωT

osc2Tℓ+1
(f, t) ≤ 2−

2
n osc2Tℓ

(f, T ), (5.5)

see Lemma 5.2. If T ∈ Tℓ\Mℓ, we use∑
t∈ωT

η̂Tℓ+1
(σℓ, t) ≤ η̂Tℓ

(σℓ, T ),
∑
t∈ωT

oscTℓ+1
(f, t) ≤ oscTℓ

(f, T ).

Combining the above inequality with (5.4) and (5.5), we obtain

η2Tℓ+1
(σℓ, Tℓ+1) ≤ η2Tℓ

(σℓ, Tℓ\Mℓ) + 2−
1
n η2Tℓ

(σℓ,Mℓ)

= η2Tℓ
(σℓ, Tℓ)− λη2Tℓ

(σℓ,Mℓ),
(5.6)

where λ = 1− 2−
1
n < 1. It then follows from (5.3) and (5.6) that

ηℓ+1 ≤ (1 + δ∗)
(
ηℓ − λη2Tℓ

(σℓ,Mℓ)
)
+ (1 + δ−1

∗ )CT0Eℓ. (5.7)

Combining (5.7) and the marking condition η2Tℓ
(σℓ,Mℓ) ≥ θ2η2ℓ , we obtain (5.2) with β =

(1 + δ∗)(1− λθ2). β < 1 provided δ∗ < λθ2

1−λθ2 . �

Now we are in a position to prove the error reduction.

Theorem 5.1. When

0 < ε <
1− β

C1C3
,

there exist α ∈ (0,1) and C4, ρ > 0 depending only on ε, θ and T0, such that

(1− ε)eℓ+1 + ρηℓ+1 ≤ α[(1− ε)eℓ + ρηℓ] + C4ôℓ. (5.8)
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Proof. Recall the quasi-orthogonality Theorem 4.1 and global reliability Theorem 3.2,

eℓ ≤ C1ηℓ, (5.9)

(1− ε)eℓ+1 ≤ eℓ − Eℓ + C0ε
−1ôℓ, for any ε > 0. (5.10)

Let ρ = 1/C3 and α ∈ (0, 1) to be determined. It follows from (5.10), (5.2), and (5.9) that

(1− ε) eℓ+1 + ρηℓ+1 ≤ eℓ + ρβηℓ + C0ε
−1ôℓ,

≤ α(1− ε)eℓ + {[1− α(1− ε)]C1 + ρβ} ηℓ + C0ε
−1ôℓ.

Let α solve αρ = [1− α(1− ε)]C1 + ρβ. By requiring ε < ρ(1− β)/C1, we obtain

α =
C1 + ρβ

(1− ε)C1 + ρ
< 1.

The proof is complete. �

The next lemma deals with data oscillation reduction on two nested meshes.

Lemma 5.2. Let Th be a conforming refinement of TH and RH be the set of refined elements

in TH . Then

osc2Th
(f, Th) ≤ osc2TH

(f, TH)− λ∗ osc
2
TH

(f,RH),

where λ∗ = 1− 2−
2
n .

Proof. Recall that ωT := {t ∈ Th : t ⊂ T} for T ∈ RH . Then∑
t∈ωT

h2
t∥f − fTh

∥2t =
∑
t∈ωT

|t| 2n ∥f − fTh
∥2t

= 2−
2
nh2

T

∑
t∈ωT

∥f − fTh
∥2t ≤ 2−

2
nh2

T ∥f − fTH
∥2T ,

which implies ∑
t⊂T, T∈RH

osc2Th
(f, t) ≤ 2−

2
n osc2TH

(f,RH).

Therefore ∑
t⊂T, T∈RH

osc2Th
(f, T ) + λ∗ osc

2
TH

(f,RH) ≤ osc2TH
(f,RH). (5.11)

For T ∈ TH\RH ,

osc2Th
(f, T ) = osc2TH

(f, T ). (5.12)

Combining (5.11) and (5.12) completes the proof. �

The next theorem shows that AMFEM is a contraction.

Theorem 5.2 (contraction). Let {σℓ, Tℓ}ℓ≥0 be a sequence of solutions and meshes produced

by AMFEM. For any 0 < ε < (1 − β)/(C1C3), there exist ρ, ζ > 0 and 0 < γ < 1 depending

only ε, θ and T0 such that,

(1− ε)∥σ − σℓ+1∥2 + ρη2Tℓ+1
(σℓ+1, Tℓ+1) + ζ osc2Tℓ+1

(f, Tℓ+1)

≤γ
{
(1− ε)∥σ − σℓ∥2 + ρη2Tℓ

(σℓ, Tℓ) + ζ osc2Tℓ
(f, Tℓ)

}
.
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Proof. Let Fℓ = (1− ε)∥σ − σℓ∥2 + ρη2Tℓ
(σℓ, Tℓ). Theorem 5.1 and Lemma 5.2 read

Fℓ+1 ≤ αFℓ + C4ôℓ, (5.13)

oℓ+1 ≤ oℓ − λ∗ôℓ, 0 < λ∗ < 1. (5.14)

Let ζ = λ−1
∗ C4. Combining (5.13), (5.14), and

ρoℓ ≤ ρηℓ ≤ Fℓ,

we have
Fℓ+1 + ζoℓ+1 ≤ αFℓ + ζoℓ

≤ (α+ ζα1ρ
−1)Fℓ + ζ(1− α1)oℓ

= γ

(
Fℓ +

ζ(1− α1)

α+ ζα1ρ−1
oℓ

)
,

(5.15)

where γ := α+ ζα1ρ
−1 and α1 ∈ (0, 1) is a constant to be determined. By requiring

α+ α1ζρ
−1 < 1,

1− α1

α+ ζα1ρ−1
≤ 1, (5.16)

(5.15) implies

Fℓ+1 + ζoℓ+1 ≤ γ(Fℓ + ζoℓ).

(5.16) can be satisfied by selecting

ρ(1− α)

ρ+ ζ
≤ α1 < min

(
1,

ρ(1− α)

ζ

)
.

The proof is complete. �

The methods used above to prove convergence have some similarities to prior work. Our

treatment of oscillation, however, uses properties of ôℓ that create distinct implementation and

efficiency improvements. To clarify this point, next we compare our convergence proof with [13]

and [27].

In [13], oscillation is not included in the error indicator and therefore there is no control

on oℓ in their quasi-orthogonality result (4.6). To enforce the strict reduction on oℓ+1 ≤ κoℓ
for some κ < 1, the AMFEM in [13] imposed a separate marking for data oscillation. Our

convergence analysis shows that the marking for data oscillation is somehow artificial. The

convergence of AMFEM can be achieved by a single marking step based on the estimator. This

improvement essentially results from the sharper quasi-orthogonality Theorem 4.1 with the

local data oscillation ôℓ, which can be canceled using Lemma 5.2 on the oscillation reduction.

The second author [27] considered adaptive methods for the Hoge Laplacian problem (2.4)

on the de Rham complex with index 1 ≤ k ≤ n. Of particular interest here is the case k = n for

the mixed formulation of Poisson’s equation. In particular, the AMFEM in [27] is a contraction

in the error ∥σ − σh∥2 + ζ̂∥d(σ − σh)∥2 + ρ̂η̂2Th
(σh, Th), which is generically of lower order than

the total error in Theorem 5.2. Since [27] considered the error ∥σ − σh∥HΛk−1 in the V -norm

instead of the L2-norm, an elementary quasi-orthogonality (Lemma 4.1 in [27])

∥σ − σh∥2 ≤
1

1− ε
∥σ − σH∥2 − ∥σh − σH∥2 +

ε

1− ε
∥fTh

− fTH∥2

is enough for convergence analysis there.
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5.2. Optimality of AMFEM

The next theorem is devoted to a discrete upper bound, which is a common ingredient of

optimal complexity proofs in the literature. Similar bound for the Hodge Laplacian problem

has already been established in [27] by using Demlow’s technique in [16]. Since the estimator

ηTh
is different from the one when k = n in [27], we sketch the proof here.

Theorem 5.3 (discrete upper bound). Let Th be a conforming refinement of TH and RH

be the set of refined elements. There exists R̃H ⊃ RH , which is the union of RH and a collection

of neighboring simplices of RH with #R̃H −#RH ≤ C, such that

∥σh − σH∥2 ≤ C5η
2
TH

(σH , R̃H).

Proof. The proof requires similar ingredients needed to prove the continuous upper bound.

We first perform the discrete Hodge decomposition of σh − σH .

σh − σH = PBh
(σh − σH) + PHh

(σh − σH) + PZ⊥
h
(σh − σH)

= (σh − PZ⊥
h
σH)− PBh

σH − PHh
σH .

Then each component can be estimated by the same procedure in the proof of continuous upper

bound. With minimal modifications in the proofs of Lemmas 3.1, 3.2, and 3.3, we have

∥σh − PZ⊥
h
σH∥ ≤ C oscTh

(f,RH), (5.17a)

∥PBh
σH∥ = ⟨−σH , dφh⟩, φh ∈ V k−2

h , (5.17b)

∥PHh
σH∥ ≤ CT0∥σh − σH∥, CT0 < 1. (5.17c)

To obtain the localized bound

∥PBh
σH∥ ≤ C

( ∑
T∈R̃H

h2
T ∥δσH∥2 + hT ∥Jtr ⋆σHK∥2∂T ) 1

2 , (5.18)

we start from (5.17b) and using equations (4.11)-(4.17) in [16]. In the end, the discrete upper

bound is proved by following the proof of Theorem 3.2 and using (5.17) and (5.18). �

Let TN = {T is a conforming refinement of T0 : #T −#T0 ≤ N}. For s > 0, we define the

approximation classes

As := {τ ∈ HΛn−1(Ω) : |τ |s := sup
N>0

(
Ns inf

T ∈TN

inf
τT ∈V n(T )

∥τ − τT ∥
)

<∞},

Ao
s := {g ∈ L2Λn(Ω) : |g|os := sup

N>0

(
Ns inf

T ∈TN

oscT (g, T )
)

<∞}.

To prove the quasi-optimality, an extra module APPROX in [13] was assumed. Here we do

not use APPROX. However, as in the classical AFEM literature [12,36], we make the following

assumptions.

Assumption 5.1.

1. The marking parameter θ ∈ (0, θ∗), where θ2∗ = min(1, C2

C5
).

2. The marking step marks a subsetMℓ with minimal cardinality.



18 M. HOLST, Y. LI, A. MAHALIK AND R. SZYPOWSKI

3. The accumulative cardinality of marked triangles satisfies (5.1).

The threshold θ∗ for marking parameter θ comes from the next lemma.

Lemma 5.3 (optimal marking). Let T be a conforming refinement of T0 and σT ∈ V n(T )
be the solution of (2.9) on T . Set µ = 1 − θ2

θ2
∗
. Let T∗ be a conforming refinement of T , such

that the finite element solution σT∗ ∈ V n(T∗) satisfies

∥σ − σT∗∥2 + osc2T∗
(f, T∗) ≤ µ

{
∥σ − σT ∥2 + osc2T (f, T )

}
. (5.19)

Then the set of enlarged refined elements R̃ in Theorem 5.3 verifies the Dörfler marking property

ηT (σT , R̃) ≥ θηT (σT , T ).

Proof. By Theorem 3.3 and (5.19),

(1− µ)C2η
2
T (σT , T ) ≤ (1− µ)

(
∥σ − σT ∥2 + osc2T (f, T )

)
≤ ∥σ − σT ∥2 − ∥σ − σT∗∥2 + osc2T (f, T )− osc2T∗

(f, T∗)
≤ ∥σT − σT∗∥2.

(5.20)

In the last step, we use the triangle inequality and oscT∗(f, T∗) ≤ oscT (f, T ). It then follows

from (5.20) and Theorem 5.3 that

η2T (σT , R̃) ≥
(1− µ)C2

C5
η2T (σT , T ).

The proof is complete by θ2∗ ≤ C2/C5. �

Combining the optimal marking Lemma 5.3 ,the contraction Theorem 5.2, and the lower

bound Theorem 3.3, the quasi-optimality of AMFEM follows from the same proof in [12], see

Lemma 5.10 and Theorem 5.11 there for details.

Theorem 5.4 (quasi-optimality). Assume that (5.1) holds. If σ ∈ As and f ∈ Ao
s, then

there exists C6 depending only on θ, s, and T0, such that{
∥σ − σN∥2 + osc2TN

(σN , TN )
} 1

2 ≤ C6(∥σ∥As + ∥f∥Ao
s
)(#TN −#T0)−s.
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[31] J.C. Nédélec, A new family of mixed finite elements in R3, Numer. Math., 50:1 (1986), 57–81.

[32] R.H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Springer-Verlag, Hei-

delberg, 2012, Lecture Notes in Mathematics.

[33] P.A. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems,

Springer, Berlin, 1977, Lecture notes in Mathematics 606.

[34] S. Repin, A posteriori estimates for partial differential equations, volume 4 of Radon Series on

Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
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