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Abstract

Poisson-Nernst-Planck equations are widely used to describe the electrodiffusion of

ions in a solvated biomolecular system. Two kinds of two-grid finite element algorithms

are proposed to decouple the steady-state Poisson-Nernst-Planck equations by coarse grid

finite element approximations. Both theoretical analysis and numerical experiments show

the efficiency and effectiveness of the two-grid algorithms for solving Poisson-Nernst-Planck

equations.
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1. Introduction

Electrodiffusion plays an important role in many fields such as biological ion channels, cellu-

lar electrophysiology and semiconductors. For the biological processes, the kinetic properties of

them are mainly governed by the electrodiffusion of charged molecules in aqueous solution. The

numerical methods for deriving the kinetic parameters usually include discrete methods (such

as Monte Carlo, Brownian dynamics and Langevin dynamics) and continuum methods. The

latter is more efficient for simulating large systems and easier to be modified to include more

physical functions. The electrodiffusion processes in biomolecular systems are usually described

by a continuum model called Poisson-Nernst-Planck (PNP) equations, which is regarded as one

of the most efficient theoretical methods for studying electrodiffusion.

The PNP equations are a coupled system of nonlinear partial differential equations consisting

of the Nernst-Planck equation and the electrostatic Poisson equation. The steady-state PNP
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equations in the biomolecular modeling are as follows [21]:











∇ ·Di
(

∇pi + βqipi∇φ
)

= 0, in Ωs, 1 ≤ i ≤ n,

−∇ · (ǫ∇φ)− λ

n
∑

i=1

qipi = ρf , in Ω,
(1.1)

where φ is the electrostatic potential and pi is the concentration of the i-th ion species. This

model is used to describe the electrodiffusion of mobile ions in a solvated biomolecular system

(see Fig. 1.1). Since the analytic solutions of the PNP equations only exit in very few cases

for simple shape molecules, a variety of numerical methods have been proposed to solve them

[8, 10, 21, 35, 44]. For example, the finite difference method has been widely used to solve the

PNP equations describing electrodiffusion in biological ion channels or other transmembrane

pores [3,16,20,43], but the accuracy is not so high when it is applied to the biomolecular models

with highly irregular surfaces. The finite element method is considered to be very promising

in which irregular shapes can be fitted more easily when applying to the PNP equations.

[18, 21, 22, 31, 32, 41].

(a)

Fig. 1.1. 2-D illustration of the computational domain modeling a solvated biomolecular system. The

domain Ωm ⊂ Ω represents the biomolecule(s) and the remaining domain Ωs = Ω \ Ω̄m shows a solvent

surrounding the biomolecule(s). The molecular surface Γ interfaces domains Ωm and Ωs. Charged

ligands in this model are also treated as diffusive species, and might react with the biomolecules on a

part of the molecular surface Γa. The diffusive particles are distributed in Ωs.

In general, there are two types of approaches to solve such a multimodel problem like PNP

equations. One is to consider the equations as a large system and solve the overall system

together. The other is to first decouple the system and then solve the equations respectively.

The latter can be implemented more easily and efficiently since the computational systems are

smaller. It can also effectively exploit the existing computing softwares and result in parallelism

in some cases. The Gummel iteration [15] is such a type of decoupling approach which may be

the most commonly used decoupling method for solving PNP equations [2, 5, 17, 23]. Lu and

Zhou [23] presented a size-modified PNP model which is able to treat arbitrary particle species.

The Gummel iteration is applied to solve the discretized system for this strong nonlinear model.

Recently, Bousquet and Hu et al. [2] designed an efficient Newton solver for drift-diffusion and


