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Abstract

As is known, there exist numerous alternating direction implicit (ADI) schemes for the

two-dimensional linear time fractional partial differential equations (PDEs). However, if

the ADI schemes for linear problems combined with local linearization techniques are ap-

plied to solve nonlinear problems, the stability and convergence of the methods are often

not clear. In this paper, two ADI schemes are developed for solving the two-dimensional

time fractional nonlinear super-diffusion equations based on their equivalent partial integro-

differential equations. In these two schemes, the standard second-order central difference

approximation is used for the spatial discretization, and the classical first-order approx-

imation is applied to discretize the Riemann-Liouville fractional integral in time. The

solvability, unconditional stability and L2 norm convergence of the proposed ADI schemes

are proved rigorously. The convergence order of the schemes is O(τ + h2
x + h2

y), where τ is

the temporal mesh size, hx and hy are spatial mesh sizes in the x and y directions, respec-

tively. Finally, numerical experiments are carried out to support the theoretical results

and demonstrate the performances of two ADI schemes.
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1. Introduction

In this paper, we consider the following two-dimensional time fractional nonlinear super-

diffusion (1 < α < 2) problems

C
0 D

α
t u = ∆u+ f(x, y, t, u), (x, y) ∈ Ω, 0 < t ≤ T, (1.1)

with boundary condition

u(x, y, t) = ψ(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T, (1.2)

and initial conditions

u(x, y, 0) = φ(x, y), ut(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω, (1.3)

where ∆ is the two-dimensional Laplacian, Ω = (0, Lx) × (0, Ly), ∂Ω and Ω are the boundary

and the closure of Ω respectively, f(x, y, t, u) is a nonlinear function of unknown u and fulfills a

Lipschitz condition with respect to u, and ψ(x, y, t), φ(x, y) and ϕ(x, y) are known sufficiently

smooth functions. C
0 D

α
t u denotes the Caputo derivative of order α defined as

C
0 D

α
t u(x, y, t) =

1

Γ(2− α)

∫ t

0

(t− s)1−α ∂
2u(x, y, s)

∂s2
ds. (1.4)

When α = 1 and α = 2, Eq. (1.1) represents a diffusion equation and a wave equation,

respectively. For 1 < α < 2, Eq. (1.1) is expected to interpolate the diffusion and the wave

phenomena, thus in this case it could be referred to as the time fractional super-diffusion or

diffusion-wave equations. Eq. (1.1) has been widely applied in the modeling of anomalous

diffusive processes and the description of viscoelastic damping materials, etc. [3, 10, 13, 15, 16,

24, 27].

Similarly to the integer-order diffusion or wave differential equations, it’s usually very d-

ifficult to obtain the analytical solution of time fractional super-diffusion equations [2, 21, 23],

especially for the nonlinear case. Thus there has been a growing interest to develop numerical

approaches for solving time fractional super-diffusion equations.

In recent years, many published papers (see, e.g., [4,5,11,12,14,18,22,25,28,33]) are devoted

to numerical methods for solving the one-dimensional time fractional diffusion equations. Sun

and Wu in [28] constructed a classical 3 − α order (1 < α < 2) approximation for Caputo

derivative, and then proposed a fully discrete difference scheme by introducing two new vari-

ables to transform the original equation into a low order system of equations, and gave the

error analysis. In [18], Lin and Xu designed a finite difference/spectrral method based on a

finite difference scheme in time and Legendre spectral methods in space. And stability and con-

vergence of this method were rigourously established. Lv and Xu in [22] improved the results

of [18] and obtained a higher order method for time fractional diffusion equations. Li et al. [14]

used finite difference method in time direction and finite element method in space direction for

time-space fractional diffusion-wave equations, and analyzed the semidiscrete and fully discrete

numerical approximations. Huang et al. [11] constructed two finite difference schemes to solve

a class of time fractional diffusion-wave equations based on their equivalent partial integro-

differential equations, and proved that the proposed two schemes were convergent with the

first-order accuracy in temporal direction and the second-order accuracy in spatial direction.

In [25], Mustapha and Schötzau established the well-posedness of an hp-version time-stepping


