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Abstract

This paper is devoted to the establishment of sharper a priori stability and error esti-

mates of a stabilized finite element method proposed by Barrenechea and Valentin [3] for

solving the generalized Stokes problem, which involves a viscosity ν and a reaction con-

stant σ. With the establishment of sharper stability estimates and the help of ad hoc finite

element projections, we can explicitly establish the dependence of error bounds of velocity

and pressure on the viscosity ν, the reaction constant σ, and the mesh size h. Our analysis

reveals that the viscosity ν and the reaction constant σ respectively act in the numerator

position and the denominator position in the error estimates of velocity and pressure in

standard norms without any weights. Consequently, the stabilization method is indeed

suitable for the generalized Stokes problem with a small viscosity ν and a large reaction

constant σ. The sharper error estimates agree very well with the numerical results.
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1. Introduction and Preliminaries

Let Ω be an open bounded polygonal domain in Rd (d = 2 or 3) with boundary ∂Ω. In

this paper, we will study the stabilized C0 finite element approximations, proposed by Bar-

renechea and Valentin in [3], to the following system of generalized Stokes equations with the

homogeneous velocity boundary condition:
σu− ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(1.1)
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where u : Ω → Rd is the velocity field and p : Ω → R is the pressure; ν > 0 is the viscosity

constant; σ > 0 is the reaction constant; and f : Ω → Rd is a given source-like function in

(L2(Ω))d.

In general, the finite element approach for solving problem (1.1) is posed as a velocity-

pressure mixed formulation in the standard Galerkin method. However, it is well known that,

for stable and optimally accurate approximations, the pair (V h, Qh) of finite element spaces

for the mixed formulation must satisfy the so-called inf-sup condition,

sup
v∈V h

(∇ · v, q)
∥v∥1

≥ c∥q∥0 ∀ q ∈ Qh, (1.2)

see, e.g., [8], [10], and [25]. This condition prevents the use of standard equal order C0 finite

element spaces for velocity and pressure with respect to the same triangulation that are the most

attractive from the viewpoint of implementation. In order to circumvent the inf-sup condition,

a class of so-called stabilized finite element methods (FEMs) has been developed and intensively

studied for more than thirty years, see, e.g., [6, 7, 9, 11, 12, 15, 21, 22, 26, 27, 32, 33, 35, 39].

The stabilized FEMs are formed by adding to the discrete mixed formulation of the generalized

Stokes problem (1.1) with some consistent variational terms, relating to the residuals of the

partial differential equations (cf. [14, 16, 19, 20, 23, 30, 31, 36, 37]). With suitable stabilization

parameters, the stabilized FEMs are successful in circumventing the above inf-sup condition.

Typically, the generalized Stokes problem (1.1) may arise from the time discretization (cf.

[38]) of transient Stokes equations or full Navier-Stokes equations by means of an operator

splitting technique, where the reaction constant is given by σ = c(δt)−1 and δt is the time

step. For problems involving fast chemical reactions, a small time step, namely a large σ, is

needed in order to account for the stiffness due to the fast reaction. However, in the context of

stabilization methods, it has been observed that the pressure instabilities may be caused as the

time step δt becomes small compared to the spatial grid size h. Therefore, in recent years, there

has been increasingly a great deal of attention on the theoretical and computational studies

of small time-step instabilities when implicit, finite difference time integration is applied in

combination with finite element stabilization in the spatial semi-discretization, see, e.g., [4, 5,

14, 17, 19, 31]. Nowadays, it has been extensively recognized that the stabilized FEMs are most

effective in dealing with the instability in the finite element solution.

In [3], Barrenechea and Valentin proposed a stabilized FEM for solving the generalized

Stokes problem (1.1) in 2D. The unusual feature of this stabilized FEM is that it involves the

subtraction of the stabilization term
∑

K∈Th
τK(σuh, σv)0,K from the original discrete mixed

finite element formulation. Numerical results provided in [3] show that the proposed method

can achieve high accuracy and stability. More remarkably, it has been numerically verified

in [3] that for a fixed small viscosity ν, the H1 errors of the resulting finite element solutions

of velocity appear to be uniform in the reaction coefficient σ when σ is large enough.

In this paper, with the help of analysis of the finite element projections for velocity and

pressure, together with a trick using a function ξ(·) of the ratio between ν and σh2
K , we are

able to derive sharper error estimates for the Barrenechea-Valentin stabilized C0 FEM that will

be briefly stated at the end of this section. We first establish two sharper stability estimates,

and then establish the explicit dependence of the error bounds on the viscosity ν, the reaction

constant σ, and the mesh size h. The significant new findings in our analysis can be summarized

as follows. The analysis reveals that the viscosity constant ν and the reaction constant σ

respectively act in the numerator position and the denominator position in the error estimates


