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Abstract

Let Ω ⊂ Rd, 1 ≤ d ≤ 3, be a bounded d-polytope. Consider the parabolic equation

on Ω with the Dirac delta function on the right hand side. We study the well-posedness,

regularity, and the interior error estimate of semidiscrete finite element approximations of

the equation. In particular, we derive that the interior error is bounded by the best local

approximation error, the negative norms of the error, and the negative norms of the time

derivative of the error. This result implies different convergence rates for the numerical

solution in different interior regions, especially when the region is close to the singular

point. Numerical test results are reported to support the theoretical prediction.
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1. Introduction

Let Ω ⊂ Rd, 1 ≤ d ≤ 3, be a bounded d-polytope and ΩT := Ω× (0, T ]. Namely, Ω is a line

segment for d = 1, a polygon for d = 2, and a polyhedron for d = 3. Denote by δz(x) = δ(x−z)
the Dirac delta function at z ∈ Ω. We consider a parabolic problem with the homogeneous

Dirichlet boundary condition

ut −∆u = f, in ΩT , (1.1a)

u = 0, on ∂Ω× [0, T ], (1.1b)

u(·, 0) = u0, on Ω× {t = 0}, (1.1c)

where u0 ∈ L2(Ω) and f = gδz for g ∈ L2(0, T ;C(Ω̄)). The finite element approximations

for parabolic equations with sufficiently smooth solutions have been well investigated in the

literature (see, e.g., [3, 21, 29]). The study of numerical methods for parabolic equations with

less regular data has become increasingly popular in recent years. We refer to [5, 14, 15] for

equations with singular solutions due to the non-smoothness in the domain and in the coefficient
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of the differential operator. Some recent results on point-wise approximations can be found

in [12,13] for fully discrete methods (finite element method in space and discontinuous Galerkin

method in time). For numerical analysis on parabolic problems with Dirac delta functions, we

mention [8, 25] and references therein. In these works, the global convergence of the numerical

scheme on the entire domain was obtained approximating the singular solution.

Partial differential equations with the δ-function sources have many applications in astro-

physics and oil reservoir simulations. Especially in the latter case, an interesting model is the

two-phase flow displacement in porous medium which can be described by a parabolic system.

Moreover, the injection and production wells can be represented by point sources and sinks,

respectively, which can be approximated by δ-singularities with different strengths. In such

problems, the exact solutions are not smooth and high-order numerical schemes can yield poor

convergence or strong oscillations in a vicinity (pollution region) of the singularity. In [30],

Yang and Shu applied discontinuous Galerkin methods to solve linear hyperbolic equations

with δ-function source terms in one space dimension and the size of the pollution region was

proved to be of order O(h
1
2 ), where h is the mesh size.

Note that the distributional data in Eq. (1.1) can lead to singular solutions, for which the

global approximation may not be of high-order accuracy even when high-order finite element

methods are used. Meanwhile, the numerical approximation in certain interior regions is often

more interesting in practice. In this paper, we study the interior error estimate of the semidis-

crete finite element method for Eq. (1.1). In particular, we first derive the well-posedness of the

weak solution for Eq. (1.1) in suitable Sobolev spaces (Theorem 2.1). This result extends the

well-posedness result in [8,16] on convex domains to general polytopal domains. Then, we show

that away from the singular point z, the solution possesses higher interior regularity (Corollary

2.1), which justifies the use of the L2 and H1 norms of the error in such interior regions for our

error analysis. The main result regarding the interior error estimate is summarized in Theorem

4.1, in which we obtain that the L2 and H1 norms of the error in an interior region away from z

are determined by three components: the best local approximation error from the finite element

space, the negative norms of the interior error, and the negative norms of the time derivative

of the local error. Namely, the interior convergence may be of higher order compared with the

global convergence, which is affected by the regularity of u and ut. Applying this result to

regions close to z, we further formulate an interior estimate (Corollary 4.1) that depends on

the distance to the singular point. This implies that as the region gets closer to z, the interior

convergence rate can slow down and eventually resemble the global convergence rate.

For elliptic boundary value problems, the finite element interior estimates have been studied

in a series of papers [20, 22–24]. These results show that the error in an interior region is

bounded by the best local approximation error and the error in negative norms. Thus, the

interior error estimates in this paper extend these results to parabolic problems by including

additional effects from the time derivative of the solution. We also mention that for parabolic

equations, an interior finite element analysis was derived in [27] using the energy method on

uniform meshes with specific conditions. In this paper, we use a more direct method to obtain

the interior error analysis, especially when distributional data is present. In addition, our results

apply to general quasi-uniform meshes.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and

derive the well-posedness and regularity results for the parabolic problem (1.1). In Section

3, we formulate the semidiscrete finite element approximation and recall useful properties of

the numerical scheme. In Section 4, we obtain the interior error estimates for the parabolic


