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Abstract. In this paper, we introduce a diffuse interface model for describing the

dynamics of mixtures involving multiple (two or more) phases. The coupled hydro-
dynamical system is derived through an energetic variational approach. The total

energy of the system includes the kinetic energy and the mixing (interfacial) ener-
gies. The least action principle (or the principle of virtual work) is applied to derive

the conservative part of the dynamics, with a focus on the reversible part of the

stress tensor arising from the mixing energies. The dissipative part of the dynam-
ics is then introduced through a dissipation function in the energy law, in line with

Onsager’s principle of maximum dissipation. The final system, formed by a set of

coupled time-dependent partial differential equations, reflects a balance among var-
ious conservative and dissipative forces and governs the evolution of velocity and

phase fields. To demonstrate the applicability of the proposed model, a few two-
dimensional simulations have been carried out, including (1) the force balance at

the three-phase contact line in equilibrium, (2) a rising bubble penetrating a fluid-

fluid interface, and (3) a solid particle falling in a binary fluid. The effects of slip
at solid surface have been examined in connection with contact line motion and a

pinch-off phenomenon.
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1. Introduction

Phase field methods (PFM), also known as diffuse interface methods, have been

widely used in modeling two-phase problems and free interface motion of mixtures.

The methods are based on a labeling function φ(x), which usually takes values as ±1,

to distinguish between the two different materials (phases). Du et. al. applied phase
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field methods in their studies of the configurations and the deformations of elastic bio-

membranes [7]. Liu and Shen investigated the use of two-phase models for studying

bubble relaxation, rise, and coalescence [18]. Qian et al. studied the moving contact

line problem using phase field methods in [19]. Yue et. al. [25] studied a general

approach for modeling two-phase complex fluids, with numerical examples simulating

emulsion of nematic drops in a Newtonian matrix. Recently Shen and Yang applied

the phase field method to two-phase incompressible flows with different densities and

viscosities [22].

The basic idea of the two-phase PFM is to use a coarse graining (mean field) model

to describe the microscopic dynamics of the mixtures. In the hydrodynamical (macro-

scopic) time scale, such dynamics involve the deformations of each phase, the interac-

tion between the two, and their interactions with the surrounding environment. The

underlying dynamical system is derived from applying variational principles to a certain

free energy, e.g. the classical Ginzburg-Landau type energy [4]

FCH =

∫
γ
{ ε
2
|∇φ|2 +

1

4ε

(
φ2 − 1

)2 }
dx,

where φ(x) is the phase field function and ε is the width of the diffuse interface. The

two parts in the above integrand represent the “philic” and “phobic” interactions be-

tween the two materials. The parameter γ can be associated to the surface tension

in the conventional sharp interface formulations. The applicability of this model has

been demonstrated for many different applications (see [8] [9] [20] and references

theirin). Although analytically it is still an open question whether the the sharp inter-

face model can be recovered by the phase field model via a rigorous proof, the latter

has been applied theoretically and numerically for a long time. Moreover, from a prac-

tical and more physical point of view, the sharp interface models can be viewed as the

simplification or idealization of phase field models.
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Figure 1: A Schematic illustration for three phases distinguished/labelled by two phase fields φ and ψ.

In this paper, we show that for problems in which more than two phases are in-

volved, we can introduce additional labeling functions to distinguish among them, as

illustrated in Fig. 1. The derivation follows from applying the energetic variational

framework as in [25]. Here, in the region at the bottom of the figure, a single phase is

characterized by {ψ = 1} and φ is not defined. In the top region of the figure, there are

two phases distinguished by different values of φ, while sharing the same ψ value. In
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