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Abstract. Sparse grids have become a versatile tool for a vast range of applications
reaching from interpolation and numerical quadrature to data-driven problems and

uncertainty quantification. We review four selected real-world applications of sparse

grids: financial product pricing with the Black-Scholes model, interactive explo-
ration of simulation data with sparse-grid-based surrogate models, analysis of simu-

lation data through sparse grid data mining methods, and stability investigations of
plasma turbulence simulations.
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1. Introduction

The underlying principle of sparse grids is a hierarchical basis that leads to a hi-

erarchical decomposition of function spaces into hierarchical increments. These hier-

archical increments are then the starting point for optimization problems with which

one constructs approximation spaces for function spaces by selecting only those incre-

ments which have a sufficiently good cost-benefit ratio; the costs equal the dimension

of the approximation space, and the benefit is related to the interpolation error in a

given norm. Sparse grid spaces are optimal approximation spaces with respect to these

criteria for the space H2
mix, which contains functions with bounded, mixed derivatives

up to order two. The corresponding theory is presented in the survey article [9].

Sparse grids have been applied to a variety of computational tasks. The purpose of

this article is to highlight four selected and recently presented real-world applications.

∗Corresponding author. Email address: pehersto@in.tum.de (B. Peherstorfer)

http://www.global-sci.org/nmtma 47 c©2015 Global-Science Press

https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2015.w05si
Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 08:27:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2015.w05si
https://www.cambridge.org/core


48 B. Peherstorfer et al.

We summarize a few key facts on sparse grids in Section 2 and clarify the notation.

Our presentation particularly emphasizes that sparse grids build on hierarchical and

multi-level principles. In Section 3, we consider financial product pricing, where the

multi-dimensional Black-Scholes equation is solved. In Section 4, a sparse-grid-based

surrogate modeling approach for interactive visual exploration of parametrized simu-

lation data is discussed. We construct a surrogate model for a building information

model (BIM) that simulates a flow through a building. We continue in Section 5 with

a data-driven problem where we analyze simulation data with sparse grid data mining

methods. Finally, multi-dimensional eigenvalue problems for plasma turbulence simu-

lations are solved on sparse grids in Section 6. The eigenvalues and eigenvectors give

information about whether the plasma is stable or not.

2. Sparse grid spaces

We give a brief overview of sparse grids and particularly emphasize the strong re-

lationship to hierarchical and multi-level computational methods. We also discuss the

combination technique, spatial adaptivity, and list a few software libraries that imple-

ment common sparse grid routines. We do not go into the details of sparse grid theory

but only present the preliminaries for the following applications. We refer to the survey

article [9] for details.

2.1. Full grid spaces and their hierarchical decomposition

Let V be a function space with domain Ω = [0, 1] and homogeneous boundaries,

e.g., V = H2
0 (Ω). We discretize a function f ∈ V by constructing its interpolant in the

finite-dimensional space V
(∞)
ℓ ⊂ V of piecewise linear functions with mesh width 2−ℓ.

The accuracy of the interpolant is controlled by the level ℓ of the space. The space V
(∞)
ℓ

is spanned by the basis functions

ϕi(x) := φ(2ℓx− i) , 1 ≤ i < 2ℓ , (2.1)

where φ : [−1, 1] → R with φ(x) = max{1 − |x|, 0}. The interpolant f̂ ∈ V
(∞)
ℓ of f ∈ V

can be represented as a linear combination

f̂ =
N
∑

i=1

aiϕi

of the basis functions (2.1) and coefficients a = [a1, · · · , aN ]T where N = 2ℓ − 1. It

follows that ai = f(i · 2−ℓ) for i = 1, · · · , N . On the one hand this means that f̂
is easy (w.r.t. the implementation effort) and cheap (w.r.t. the computational costs)

to compute. On the other hand, the coefficients a do not lead to an ordering of the

basis functions with respect to the benefit of including a basis function into the linear
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